Spelling suggestions: "subject:"loop models"" "subject:"hoop models""
1 |
Lien entre les matrices de transfert de spins et de boucles du modèle de Potts sur le toreGenest, Vincent 10 1900 (has links)
Le lien entre le spectre de la matrice de transfert de la formulation de spins du modèle de Potts critique et celui de la matrice de transfert double-ligne de la formulation de boucles est établi. La relation entre la trace des deux opérateurs est obtenue dans deux représentations de l'algèbre de Temperley-Lieb cyclique, dont la matrice de transfert de boucles est un élément. Le résultat est exprimé en termes des traces modifiées, qui correspondent à des traces effectuées dans le sous-espace de l'espace de représentation des N-liens se transformant selon la m ième représentation irréductible du groupe cyclique. Le mémoire comporte trois chapitres. Dans le premier chapitre, les résultats essentiels concernant les formulations de spins et de boucles du modèle de Potts sont rappelés. Dans le second chapitre, les propriétés de l'algèbre de Temperley-Lieb cyclique et de ses représentations sont étudiées. Enfin, le lien entre les deux traces est construit dans le troisième chapitre. Le résultat final s'apparente à celui obtenu par Richard et Jacobsen en 2007, mais une nouvelle représentation n'ayant pas été étudiée est aussi investiguée. / The link between the spectrum of the spin transfer matrix of the critical Potts model and that of the double-row transfer matrix of the loop model is established. The relationship between the two operators is obtained in two different representations of the cyclic Temperley-Lieb algebra, whereof the transfer matrix is an element. The result is given in terms of the modified traces that correspond to tracing out the subspace of the N-link representation space that transforms according to the m th representation of the cyclic group. The thesis consists of three chapters. In the first chapter, basic results about the Potts model in the spin and loop pictures are recalled. In the second chapter, the properties of the cyclic Temperley-Lieb algebra and of some of its representations are studied. Finally, the relationship between the traces of the two operators is constructed in the third chapter. The final result is similar to the one obtained by Jacobsen and Richard in 2007, but a new representation that has not been studied is investigated.
|
2 |
Lien entre les matrices de transfert de spins et de boucles du modèle de Potts sur le toreGenest, Vincent 10 1900 (has links)
Le lien entre le spectre de la matrice de transfert de la formulation de spins du modèle de Potts critique et celui de la matrice de transfert double-ligne de la formulation de boucles est établi. La relation entre la trace des deux opérateurs est obtenue dans deux représentations de l'algèbre de Temperley-Lieb cyclique, dont la matrice de transfert de boucles est un élément. Le résultat est exprimé en termes des traces modifiées, qui correspondent à des traces effectuées dans le sous-espace de l'espace de représentation des N-liens se transformant selon la m ième représentation irréductible du groupe cyclique. Le mémoire comporte trois chapitres. Dans le premier chapitre, les résultats essentiels concernant les formulations de spins et de boucles du modèle de Potts sont rappelés. Dans le second chapitre, les propriétés de l'algèbre de Temperley-Lieb cyclique et de ses représentations sont étudiées. Enfin, le lien entre les deux traces est construit dans le troisième chapitre. Le résultat final s'apparente à celui obtenu par Richard et Jacobsen en 2007, mais une nouvelle représentation n'ayant pas été étudiée est aussi investiguée. / The link between the spectrum of the spin transfer matrix of the critical Potts model and that of the double-row transfer matrix of the loop model is established. The relationship between the two operators is obtained in two different representations of the cyclic Temperley-Lieb algebra, whereof the transfer matrix is an element. The result is given in terms of the modified traces that correspond to tracing out the subspace of the N-link representation space that transforms according to the m th representation of the cyclic group. The thesis consists of three chapters. In the first chapter, basic results about the Potts model in the spin and loop pictures are recalled. In the second chapter, the properties of the cyclic Temperley-Lieb algebra and of some of its representations are studied. Finally, the relationship between the traces of the two operators is constructed in the third chapter. The final result is similar to the one obtained by Jacobsen and Richard in 2007, but a new representation that has not been studied is investigated.
|
3 |
Hiérarchie de fusion et systèmes T et Y pour le modèle de boucles diluées \(A_2^{(2)}\) sur le rubanBoileau, Florence 02 1900 (has links)
Le modèle de boucles diluées \(A_2^{(2)}\) est étudié pour la géométrie d'un ruban de taille \(N\). Deux familles de conditions frontières sont connues pour satisfaire l’équation de Yang-Baxter à la frontière. Fixer ces conditions aux deux bouts du ruban donne un total de quatre modèles. Pour chaque modèle, les matrices de transfert, qui commutent entre elles, sont connues. Dans ce mémoire, la hiérarchie de fusion des matrices de transfert et les systèmes T et Y sont construits pour chaque modèle et pour un paramètre de croisement \(\lambda\) générique. Pour \(\lambda/\pi\) rationnel, il est prouvé qu'il existe une relation linéaire entre les matrices fusionnées qui ferme la hiérarchie de fusion en un système fini. Les relations de fusion et de fermeture permettent de calculer les premiers termes d'une expansion de l'énergie libre lorsque \(N\) est grand. Ces premiers termes correspondent à l'énergie libre de bulk et de bord. Les résultats analytiques sont en accord avec des résultats numériques obtenus pour de petits \(N\). Ce mémoire complète une étude des modèles \(A_2^{(2)}\) avec des conditions frontières périodiques (A. Morin-Duchesne, P.A. Pearce, J. Stat. Mech. (2019)). / We study the dilute \(A_2^{(2)}\) loop models on the geometry of a strip of width \(N\). Two families of boundary conditions are known to satisfy the boundary Yang-Baxter equation. Fixing the boundary condition on the two ends of the strip leads to four models. We construct the fusion hierarchy of commuting transfer matrices for the model as well as its T- and Y-systems, for these four boundary conditions and with a generic crossing parameter \(\lambda\). For \(\lambda/\pi\) rational we prove a linear relation satisfied by the fused transfer matrices that closes the fusion hierarchy into a finite system. The fusion relations allow us to compute the two leading terms in the large-\(N\) expansion of the free energy, namely the bulk and boundary free energies. These are found to be in agreement with numerical data obtained for small \(N\). The present work complements a previous study (A. Morin-Duchesne, P.A. Pearce, J. Stat. Mech. (2019)) that investigated the dilute \(A_2^{(2)}\) loop models with periodic boundary conditions.
|
4 |
Non compact conformal field theories in statistical mechanics / Théories conformes non compactes en physique statistiqueVernier, Eric 27 April 2015 (has links)
Les comportements critiques des systèmes de mécanique statistique en 2 dimensions ou de mécanique quantique en 1+1 dimensions, ainsi que certains aspects des systèmes sans interactions en 2+1 dimensions, sont efficacement décrits par les méthodes de la théorie des champs conforme et de l'intégrabilité, dont le développement a été spectaculaire au cours des 40 dernières années. Plusieurs problèmes résistent cependant toujours à une compréhension exacte, parmi lesquels celui de la transition entre plateaux dans l'Effet Hall Quantique Entier. La raison principale en est que de tels problèmes sont généralement associés à des théories non unitaires, ou théories conformes logarithmiques, dont la classification se révèle être d'une grande difficulté mathématique. Se tournant vers la recherche de modèles discrets (chaînes de spins, modèles sur réseau), dans l'espoir en particulier d'en trouver des représentations en termes de modèles exactement solubles (intégrables), on se heurte à la deuxième difficulté représentée par le fait que les théories associées sont la plupart du temps non compactes, ou en d'autres termes qu'elles donnent lieu à un continuum d'exposants critiques. En effet, le lien entre modèles discrets et théories des champs non compactes est à ce jour loin d'être compris, en particulier il a longtemps été cru que de telles théories ne pouvaient pas émerger comme limites continues de modèles discrets construits à partir d'un ensemble compact de degrés de libertés, par ailleurs les seuls qui donnent a accès à une construction systématique de solutions exactes.Dans cette thèse, on montre que le monde des modèles discrets compacts ayant une limite continue non compacte est en fait beaucoup plus grand que ce que les quelques exemples connus jusqu'ici auraient pu laisser suspecter. Plus précisément, on y présente une solution exacte par ansatz de Bethe d'une famille infinie de modèles(les modèles $a_n^{(2)}$, ainsi que quelques résultats sur les modèles $b_n^{(1)}$, où il est observé que tous ces modèles sont décrits dans un certain régime par des théories conformes non compactes. Parmi ces modèles, certains jouent un rôle important dans la description de phénomènes physiques, parmi lesquels la description de polymères en deux dimensions avec des interactions attractives et des modèles de boucles impliqués dans l'étude de modèles de Potts couplés ou dans une tentative de description de la transition entre plateaux dans l'Effet Hall par un modèle géométrique compact.On montre que l'existence insoupçonnéede limite continues non compacts pour de tels modèles peut avoir d'importantes conséquences pratiques, par exemple dans l'estimation numérique d'exposants critiques ou dans le résultats de simulations de Monte Carlo. Nos résultats sont appliqués à une meilleure compréhension de la transition theta décrivant l'effondrement des polymères en deux dimensions, et des perspectives pour une potentielle compréhension de la transition entre plateaux en termes de modèles sur réseaux sont présentées. / The critical points of statistical mechanical systems in 2 dimensions or quantum mechanical systems in 1+1 dimensions (this also includes non interacting systems in 2+1 dimensions) are effciently tackled by the exact methods of conformal fieldtheory (CFT) and integrability, which have witnessed a spectacular progress during the past 40 years. Several problems have however escaped an exact understanding so far, among which the plateau transition in the Integer Quantum Hall Effect,the main reason for this being that such problems are usually associated with non unitary, logarithmic conformal field theories, the tentative classification of which leading to formidable mathematical dificulties. Turning to a lattice approach, andin particular to the quest for integrable, exactly sovable representatives of these problems, one hits the second dificulty that the associated CFTs are usually of the non compact type, or in other terms that they involve a continuum of criticalexponents. The connection between non compact field theories and lattice models or spin chains is indeed not very clear, and in particular it has long been believed that the former could not arise as the continuum limit of discrete models built out of acompact set of degrees of freedom, which are the only ones allowing for a systematic construction of exact solutions.In this thesis, we show that the world of compact lattice models/spin chains with a non compact continuum limit is much bigger than what could be expected from the few particular examples known up to this date. More precisely we propose an exact Bethe ansatz solution of an infinite family of models (the so-called $a_n^{(2)}$ models, as well as some results on the $b_n^{(1)}$ models), and show that all of these models allow for a regime described by a non compact CFT. Such models include cases ofgreat physical relevance, among which a model for two-dimensional polymers with attractive interactions and loop models involved in the description of coupled Potts models or in a tentative description of the quantum Hall plateau transition by somecompact geometrical truncation. We show that the existence of an unsuspected non compact continuum limit for such models can have dramatic practical effects, for instance on the output of numerical determination of the critical exponents or ofMonte-Carlo simulations. We put our results to use for a better understanding of the controversial theta transition describing the collapse of polymers in two dimensions, and draw perspectives on a possible understanding of the quantum Hall plateautransition by the lattice approach.
|
Page generated in 0.0581 seconds