• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transport Signatures and Energy Scales of Collective Insulators Forming Near Integer Quantum Hall Plateaus

Sean Anthony Myers (13124649) 20 July 2022 (has links)
<p>Topological materials have been under intense investigation for more than 30 years and have experienced astonishing growth  over the last decade. The two-dimensional electron gas has long served as a model system for the exploration of topological physics, supporting a diverse array of strongly correlated emergent phenomena. Indeed, some of the most stunning topological phases in condensed matter systems are the integer and fractional quantum Hall states forming in two-dimensional electron gases.</p> <p>It was realized early on that electron localization in the bulk has an important role in attaining topological phases, where the sample bulk is well described by randomly localized electrons, known as the Anderson insulator. However, a different type of topological phases forms when charge carriers order in the bulk. Such a charge ordering can only occur in the presence of strong electron-electron interactions and low disorder. Localization of this kind is of a collective nature and differs fundamentally from the single particle physics of the Anderson insulator. The nature of charge ordering, however, is more nuanced than first thought. Indeed, in high Landau levels, Hartree-Fock theories predict the proliferation of numerous exotic bulk insulators, where in the limit of no disorder electrons cluster together and form a hexagonal lattice. Initial observations of these highly correlated insulating phases were limited to low disorder two-dimensional electron gases confined to GaAs/AlGaAs heterostructures. However, recent discoveries of charge ordering in two-dimensional electron gases confined to graphene highlight the universality of this phenomena, irrespective of host material. While progress has been made in understanding the collective insulators residing within integer quantum Hall plateaus, many aspects remain unresolved. In this Dissertation, I discuss the transport properties and energetics of collective insulators forming near integer quantum Hall plateaus in the latest generation of very low disorder two-dimensional electron gases.</p> <p>In chapter  1  I briefly introduce recent developments in our current understanding of the integer quantum Hall effect, where the topological phase is described by both a topological invariant as well as a local order parameter related to the Landau symmetry breaking paradigm. Next, I introduce the basic principles of two-dimensional electron gases confined to semiconductor heterostructures and provide a short summary of recent technological breakthroughs in molecular beam epitaxial growth protocols. The chapter concludes with an introduction to the essential physics of both the integer and the fractional quantum Hall effect.</p> <p>Chapter  2  contains a brief review of the existing literature on the collective insulators forming in sufficiently low disorder two-dimensional electron gases. The primary focus of chapter  2  is on the unique magnetotransport patterns seen at various Landau level filling factors, which support the collective insulator  interpretation. Throughout this chapter I tend to lean on theoretical models that describe these collective phases through the lens of the Hartree-Fock theory; however, it is important to note that both density matrix renormalization group theories and direct diagonalization of small electron systems reach similar conclusions.</p> <p>In chapter  3  I present our data displaying the hallmark transport signatures of a collective insulator residing within the flanks of the nu = 1 integer quantum Hall plateau. Our sample belongs to the latest generation of low disorder 2DEGs confined to GaAs/AlGaAs. I provide a detailed analysis of its development in both temperature and filling factor. The distinct transport signatures we observe strongly overlap in filling factor with prior microwave resonance, surface acoustic wave, compressibility, and tunneling measurements, all of which point to the formation of a collective insulator known as the integer quantum Hall Wigner solid. One puzzling aspect, however, is that while the latter measurements exhibit the integer quantum Hall Wigner solid in older generation samples, transport signatures of this phase appear to be present only in the newest and highest mobility samples. By using distinct features in the magnetoresistance, I propose a stability diagram of the integer quantum Hall Wigner solid in nu −T phase space. Analysis of magnetoresistance profiles at fixed filling factors display sharp peaks within the region of integer quantum Hall Wigner solid phase. It is believed that these sharp peaks are a shared property of collective insulators forming in low disorder two-dimensional electron gases and signal the onset of the electron solid formation. Additional analysis of the magnetoresistance profiles suggests activated transport behavior with a gap energy comparable to that of the plateau center. Lastly, I present large signal measurements of the nu = 1 integer quantum Hall Wigner solid. The data displays strong non-linear behavior in the current-voltage characteristics consistent with the depinning and sliding conduction. However, similar threshold conduction is also seen in the current-voltage characteristics near the center of the integer quantum Hall plateau, where the bulk is an Anderson insulator. Much to our surprise, trends in the threshold current are monotonic in filling factor.</p> <p>In chapter  4  I report on the recent emergence of a newly observed collective insulator residing within the nu = 2 integer quantum Hall plateau and centered at filling factor nu = 1.79. Based on the range of filling factors which stabilizes this collective insulator, we find it distinct from the aforementioned integer quantum Hall Wigner solid. Indeed, the transport behavior is eerily reminiscent to the reentrant insulating phase seen at low filling factors between 1/5 < nu < 2/9. Hence, we term this collective insulator the reentrant integer quantum Hall Wigner solid. Evoking concepts of particle-hole symmetry, we find the reentrant integer quantum Hall Wigner solid to be one member of the larger family of Wigner solids, which is intimately linked through this fundamental symmetry of the system.</p> <p>Lastly in chapter  5 , I explore the energetics of the collective insulators which develop in the N = 2 and N = 3 Landau level, specifically the two- and three-electron bubble phase. We extract the onset temperatures of these exotic bulk insulators from the sharp peaks in the magnetoresistance at fixed filling factor. We compare our measured onset energies with the cohesive energies found from numerical calculations. We find the onset temperatures for the both two- and three-electron bubble phase show an approximately linear trend in filling factor within a single Landau level. In addition, we observe that the three-electron bubble phase has a larger onset temperature than the two-electron bubble phase, a result which is inconsistent with some numerical energy calculations. Thus, our measurements of bubble phase energetics call attention to the importance of the short-range Coulomb interaction in the formation of multi-electron bubble phases and is expected to serve as guide towards the refinement of existing theoretical models.</p>
2

Amélioration de la cohérence quantique dans le régime d'effet Hall quantique entier / Engineering quantum coherence in the integer quantum Hall effect regime

Hyunh, Phuong-Anh 09 February 2012 (has links)
Cette thèse est consacrée à l'amélioration de la cohérence dans le régime d'effet Hall quantique entier (EHQE) à facteur de remplissage ν=2, obtenu en appliquant un fort champ magnétique perpendiculairement au plan d'un gaz bidimensionnel d'électrons formé à l'interface d'une hétérostructure semiconductrice d'AlGaAs/GaAs. On obtient alors des conducteurs unidimensionnels chiraux (états de bord) permettant de réaliser l'équivalent électronique de l'interféromètre de Mach-Zehnder (IMZ), pour étudier la cohérence dans ce régime. L'observation inattendue d'une structure périodique en forme de lobes dans la visibilité des interférences en fonction de la tension appliquée en entrée suggère un rôle non négligeable des interactions.Dans un première partie nous expliquons l'émergence des états de bord dans le régime d'EHQE. Nous faisons ensuite l'état de l'art des connaissances concernant leur cohérence, puis nous présentons l'IMZ électronique du point de vue expérimental.Ensuite, nous détaillons les résultats expérimentaux, d'abord concernant la visibilité à tension finie: nos mesures confirment une prédiction théorique concernant un transition de phase quantique en fonction de la dilution de l'état de bord qui interfère ; nous ne voyons pas d'effet flagrant de la relaxation en énergie. Enfin, de précédents travaux(1) ayant identifié clairement l'état de bord voisin de celui qui interfère comme l'environnement limitant la cohérence du système, nous avons réalisé un nouveau type d'échantillon afin de diminuer le couplage à cet environnement de manière contrôlée. Nous avons ainsi augmenté la cohérence de moitié en accord quantitatif avec la théorie issue de précédents travaux(1).(1)P. Roulleau, F. Portier, P. Roche, A. Cavanna, G. Faini, U. Gennser, and D. Mailly. Noise Dephasing in Edge States of the Integer Quantum Hall Regime. Physical Review Letters, 101(18):186803–4, October 2008 / This PhD thesis is devoted to the engineering of quantum coherence in the integer quantum Hall effect regime (IQHE) at filling factor ν=2, obtained by applying a strong perpendicular magnetic field to a bidimensional electron gas formed at the interface of a GaAlAs/GaAs semiconducting heterostructure. Then unidimensional chiral conductors called edge states appear which can be used as electron beams to build the equivalent in condensed matter of a Mach-Zehnder interferometer (MZI) so as to study coherence in this regime. The unexpected periodic lobe structure of the visibility as function of the bias voltage suggests that interactions play an important role.In the first part, we explain how edge states emerge in the IQHE regime. We picture the state of the art on the edge states coherence. Then we present the MZI from the experimental point of view.Next we show our results, first concerning the visibility at finite bias: our measurements confirm a prediction about a quantum phase transition as function of the interfering edge state dilution. We don't see any significant manifestation of energy relaxation in the visibility. Finally, having identified the adjacent edge state as the noisy environment limitating coherence thanks to previous works, we have designed a new kind of sample to decrease the coupling of the system to this environment in a controlled manner. We thus decreased dephasing by half, in quantitative agreement with the theory developped previously in our group.
3

Efeitos geométricos, inerciais e topológicos na condutividade Hall

Silva, Júlio Eloísio Brandão da 16 March 2017 (has links)
Submitted by Vasti Diniz (vastijpa@hotmail.com) on 2017-09-11T14:24:18Z No. of bitstreams: 1 arquivototal.pdf: 2910617 bytes, checksum: 78d320ecf6eab76dd1627257ec1aa34d (MD5) / Made available in DSpace on 2017-09-11T14:24:18Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 2910617 bytes, checksum: 78d320ecf6eab76dd1627257ec1aa34d (MD5) Previous issue date: 2017-03-16 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Electromagnetic fields acting on particles have been extensively studied in different areas of physics. In quantum mechanics for example, effects such as Aharonov-Bohm, Landau levels and Hall conductivity, have always motivated new papers including analogous inertial models. Inertial effects play an important role in classical mechanics, but have been largely ignored in quantum mechanics. However, the analogy between inertial forces on mass particles and electromagnetic forces on charged particles is not new. Another factor that may influence the classical and quantum behavior of particles is geometry. An element related to geometry that has been extensively studied in several areas is the topological defect. Topological defects represent an interface between areas such as cosmology, gravitation, and condensed matter. Such defects in condensed matter can be developed through the classical theory of elasticity. However, due to the interdisciplinarity of this theme, approaches from gravitation can also describe them. Based on this analogy, the medium formed by a topological defect is characterized by a metric tensor. From this approach, several problems can be discussed by analyzing the influence of the topological defect in the solution of the problem. In this work, it will be discussed how magnetic field, rotation and topological defects, especially the disclination, influence in the Landau Levels and the Hall conductivity for a noninteracting planar two-dimensional electron gas. First we will discuss the influence of each of these elements and then the influence of all of them simultaneously. / A atuação de campos eletromagnéticos em partículas têm sido extensivamente estudada em diferentes áreas da física. Em mecânica quântica por exemplo, efeitos como Aharonov-Bohm, níveis de Landau e condutividade Hall, têm sempre motivado novos trabalhos inclusive para modelos análogos inerciais. Os efeitos inerciais desempenham um papel importante na mecânica clássica, mas tem sido largamente ignorados em mecânica quântica. No entanto, a analogia entre forças inerciais sobre partículas de massa e forças eletromagnéticas sobre partículas carregadas não é nova. Um outro fator que pode influenciar no comportamento clássico e quântico de partículas é a geometria. Um elemento relacionado a geometria e que tem sido bastante estudado em diversas áreas, é o defeito topológico. Os defeitos topológicos representam uma interface entre áreas como cosmologia, gravitação e matéria condensada. Tais defeitos em matéria condensada podem ser desenvolvidos através da teoria clássica da elasticidade. Contudo, devido a interdisciplinaridade desse tema, abordagens provenientes da gravitação podem também descrevê-los. Com base nessa analogia, caracteriza-se o meio formado por um defeito topológico mediante um tensor métrico. A partir dessa abordagem, diversos problemas podem ser discutidos analisando a influência do defeito topológico na solução do problema. Nesse trabalho, será discutido como campo magnético, rotação e defeitos topológicos, em especial a desclinação, influenciam os níveis de Landau e a condutividade Hall para um gás de elétrons bidimensional planar não interagente. Primeiramente discutiremos a influência de cada um desses elementos e em seguida a influência de todos simultaneamente. Será mostrado como a rotação quebra a degenerescência dos níveis de Landau aumentando consequentemente a condutividade Hall. Será mostrado também que acoplamento dos três elementos gera uma região para campos magnéticos fracos com sem estados ligados. Com um outro ponto de partida mostraremos também que a rotação pode ser utilizada para sintonizar a condutividade Hall.
4

Cold atom quantum simulation of topological phases of matter

Dauphin, Alexandre 12 June 2015 (has links)
L'étude des phases de la matière est d'un intérêt fondamental en physique. La théorie de Landau, qui est le "modèle standard" des transitions de phases, caractérise les phases de la matière en termes des brisures de symétrie, décrites par un paramètre d'ordre local. Cette théorie a permis la description de phénomènes remarquables tels que la condensation de Bose-Einstein, la supraconductivité et la superfluidité.<p><p>Il existe cependant des phases qui échappent à la description de Landau. Il s'agit des phases quantiques topologiques. Celles-ci constituent un nouveau paradigme et sont caractérisées par un ordre global défini par un invariant topologique. Ce dernier classe les objets ou systèmes de la manière suivante: deux objets appartiennent à la même classe topologique s'il est possible de déformer continument le premier objet en le second. Cette propriété globale rend le système robuste contre des perturbations locales telles que le désordre. <p><p>Les atomes froids constituent une plateforme idéale pour simuler les phases quantiques topologiques. Depuis l'invention du laser, les progrès en physique atomique et moléculaire ont permis un contrôle de la dynamique et des états internes des atomes. La réalisation de gaz quantiques,tels que les condensats de Bose-Einstein et les gaz dégénérés de Fermi, ainsi que la réalisation de réseaux optiques à l'aide de faisceaux lasers, permettent d'étudier ces nouvelles phases de la matière et de simuler aussi la physique du solide cristallin.<p><p>Dans cette thèse, nous nous concentrons sur l'etude d'isolants topologiques avec des atomes froids. Ces derniers sont isolants de volume mais possèdent des états de surface qui sont conducteurs, protégés par un invariant topologique. Nous traitons trois sujets principaux. Le premier sujet concerne la génération dynamique d'un isolant topologique de Mott. Ici, les interactions engendrent l'isolant topologique et ce, sans champ de jauge de fond. Le second sujet concerne la détection des isolants topologiques dans les expériences d'atomes froids. Nous proposons deux méthodes complémentaires pour caractériser celles-ci. Finalement, le troisième sujet aborde des thèmes au-delà de la définition standard d'isolant topologique. Nous avons d'une part proposé un algorithme efficace pour calculer la conductivité de Berry, la contribution topologique à la conductivité transverse lorsque l'énergie de Fermi se trouve dans une bande d'énergie. D'autre part, nous avons utilisé des méthodes pour caractériser les propriétés quantiques topologiques de systèmes non-périodiques.<p><p>L'étude des isolants topologiques dans les expériences d'atomes froids est un sujet de recherche récent et en pleine expansion. Dans ce contexte, cette thèse apporte plusieurs contributions théoriques pour la simulation de systèmes quantiques sur réseau avec des atomes froids. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
5

Exploring 2D Metal-Insulator Transition in p-GaAs Quantum Well with High rs

Qiu, Lei 21 February 2014 (has links)
No description available.
6

Non compact conformal field theories in statistical mechanics / Théories conformes non compactes en physique statistique

Vernier, Eric 27 April 2015 (has links)
Les comportements critiques des systèmes de mécanique statistique en 2 dimensions ou de mécanique quantique en 1+1 dimensions, ainsi que certains aspects des systèmes sans interactions en 2+1 dimensions, sont efficacement décrits par les méthodes de la théorie des champs conforme et de l'intégrabilité, dont le développement a été spectaculaire au cours des 40 dernières années. Plusieurs problèmes résistent cependant toujours à une compréhension exacte, parmi lesquels celui de la transition entre plateaux dans l'Effet Hall Quantique Entier. La raison principale en est que de tels problèmes sont généralement associés à des théories non unitaires, ou théories conformes logarithmiques, dont la classification se révèle être d'une grande difficulté mathématique. Se tournant vers la recherche de modèles discrets (chaînes de spins, modèles sur réseau), dans l'espoir en particulier d'en trouver des représentations en termes de modèles exactement solubles (intégrables), on se heurte à la deuxième difficulté représentée par le fait que les théories associées sont la plupart du temps non compactes, ou en d'autres termes qu'elles donnent lieu à un continuum d'exposants critiques. En effet, le lien entre modèles discrets et théories des champs non compactes est à ce jour loin d'être compris, en particulier il a longtemps été cru que de telles théories ne pouvaient pas émerger comme limites continues de modèles discrets construits à partir d'un ensemble compact de degrés de libertés, par ailleurs les seuls qui donnent a accès à une construction systématique de solutions exactes.Dans cette thèse, on montre que le monde des modèles discrets compacts ayant une limite continue non compacte est en fait beaucoup plus grand que ce que les quelques exemples connus jusqu'ici auraient pu laisser suspecter. Plus précisément, on y présente une solution exacte par ansatz de Bethe d'une famille infinie de modèles(les modèles $a_n^{(2)}$, ainsi que quelques résultats sur les modèles $b_n^{(1)}$, où il est observé que tous ces modèles sont décrits dans un certain régime par des théories conformes non compactes. Parmi ces modèles, certains jouent un rôle important dans la description de phénomènes physiques, parmi lesquels la description de polymères en deux dimensions avec des interactions attractives et des modèles de boucles impliqués dans l'étude de modèles de Potts couplés ou dans une tentative de description de la transition entre plateaux dans l'Effet Hall par un modèle géométrique compact.On montre que l'existence insoupçonnéede limite continues non compacts pour de tels modèles peut avoir d'importantes conséquences pratiques, par exemple dans l'estimation numérique d'exposants critiques ou dans le résultats de simulations de Monte Carlo. Nos résultats sont appliqués à une meilleure compréhension de la transition theta décrivant l'effondrement des polymères en deux dimensions, et des perspectives pour une potentielle compréhension de la transition entre plateaux en termes de modèles sur réseaux sont présentées. / The critical points of statistical mechanical systems in 2 dimensions or quantum mechanical systems in 1+1 dimensions (this also includes non interacting systems in 2+1 dimensions) are effciently tackled by the exact methods of conformal fieldtheory (CFT) and integrability, which have witnessed a spectacular progress during the past 40 years. Several problems have however escaped an exact understanding so far, among which the plateau transition in the Integer Quantum Hall Effect,the main reason for this being that such problems are usually associated with non unitary, logarithmic conformal field theories, the tentative classification of which leading to formidable mathematical dificulties. Turning to a lattice approach, andin particular to the quest for integrable, exactly sovable representatives of these problems, one hits the second dificulty that the associated CFTs are usually of the non compact type, or in other terms that they involve a continuum of criticalexponents. The connection between non compact field theories and lattice models or spin chains is indeed not very clear, and in particular it has long been believed that the former could not arise as the continuum limit of discrete models built out of acompact set of degrees of freedom, which are the only ones allowing for a systematic construction of exact solutions.In this thesis, we show that the world of compact lattice models/spin chains with a non compact continuum limit is much bigger than what could be expected from the few particular examples known up to this date. More precisely we propose an exact Bethe ansatz solution of an infinite family of models (the so-called $a_n^{(2)}$ models, as well as some results on the $b_n^{(1)}$ models), and show that all of these models allow for a regime described by a non compact CFT. Such models include cases ofgreat physical relevance, among which a model for two-dimensional polymers with attractive interactions and loop models involved in the description of coupled Potts models or in a tentative description of the quantum Hall plateau transition by somecompact geometrical truncation. We show that the existence of an unsuspected non compact continuum limit for such models can have dramatic practical effects, for instance on the output of numerical determination of the critical exponents or ofMonte-Carlo simulations. We put our results to use for a better understanding of the controversial theta transition describing the collapse of polymers in two dimensions, and draw perspectives on a possible understanding of the quantum Hall plateautransition by the lattice approach.

Page generated in 0.0763 seconds