• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A single-photon source based on a lateral n-i-p junction driven by a surface acoustic wave

Hsiao, Tzu-Kan January 2018 (has links)
Single-photon sources are essential building blocks in quantum photonic networks, where quantum-mechanical properties of photons are utilised to achieve quantum technologies such as quantum cryptography and quantum computing. In this thesis, a single-photon source driven by a surface acoustic wave (SAW) is developed and characterised. This single-photon source is based on a SAW-driven lateral n-i-p junction in a GaAs quantum-well structure. On this device, the lateral n-i-p junction is formed by gate-induced electrons and holes in two adjacent regions. The SAW potential minima create dynamic quantum dots in a 1D channel between these two regions, and are able to transport single electrons to the region of holes along the channel. Single-photon emission can therefore be generated as these electrons consecutively recombine with holes. After characterisation and optimisation in four batches of devices, clear SAW-driven charge transport and the corresponding electroluminescence (EL) can be observed on an optimised SAW-driven n-i-p junction. Time-resolved measurements have been carried out to study the dynamics of SAW-driven electrons. Time-resolved EL signals indicate that a packet of electrons is transported to the region of holes in each SAW minimum. In addition, the carrier lifetime of SAW-driven electrons in the region of holes is shown to be $\sim 100$ ps, which is much shorter than the SAW period of $860$ ps. Hence, it is promising to observe single-photon emission in the optimised device. In order to test single-photon emission, a Hanbury Brown-Twiss experimental setup has been employed to record an autocorrelation histogram of the SAW-driven EL signal at the single-electron regime. Suppression of autocorrelation coincidences at time delay $\Delta t = 0$ is evidence of photon antibunching. By fitting theoretical functions describing the SAW-driven EL signal, it is found that the second-order correlation function shows $g^{(2)}(0) = 0.39 \pm 0.05$, which is lower than the common criterion for a single-photon source $g^{(2)}(0) < 0.5$. Moreover, theoretical calculation and simulation suggest that, if a constant background signal can be filtered out, $\sim 80 \%$ of the SAW-driven EL is single-photon emission.
2

InGaAsP/GaAs Quantum Well Lasers: Material Properties, Laser Design and Fabrication, Ultrashort-Pulse External-Cavity Operation

Wallace, Steven 04 1900 (has links)
A detailed characterization of the Ini-xGaxAsyP1-j, quaternary material system lattice matched to GaAs, grown by gas source Molecular Beam Epitixy (MBE) has been performed. Photoluminescence, X-ray diffraction and Transmission Electron Microscopy (TEM) were used to study the lateral composition modulation (LCM) which was observed in this material system. Optimization of the growth process and the substrate orientation resulted in a significant reduction of the LCM. Additionally, a comprehensive analysis of the optical constants was performed which resulted in the first publication of wavelength and composition dependent index of refraction data for this material system. The combination of growth optimization and index of refraction data lead to the demonstration of efficient, low threshold operation of InGaAsP/GaAs based multiple quantum well lasers. In order to efficiently couple the above laser diodes to an external cavity to facilitate the generation of ultrashort pulses, antireflection facet coatings were required. As such, optical interference filters have been fabricated using a plasma enhanced chemical vapor deposition system, based on the SiOxNy material system. High quality antireflection facet coatings, suitable for application to the InGaAsP/GaAs diode lasers have been designed and fabricated, resulting in modal reflectivities of 1-2 x 10-4. Finally, an ultrashort-pulse external-cavity diode laser system was designed and manufactured which allowed the laser diode to be wavelength tuned and emit mode-locked ultrashort optical pulses. Pulses with sub 2 ps duration and greater than 1 mW average output power have been achieved. A study of the novel application of an asymmetric quantum well structure to the generation of ultrashort optical pulses has been proposed and initiated. / Thesis / Doctor of Philosophy (PhD)
3

Exploring 2D Metal-Insulator Transition in p-GaAs Quantum Well with High rs

Qiu, Lei 21 February 2014 (has links)
No description available.
4

Electronic Transport in Functional Materials and Two-Dimensional Hole System

Liu, Shuhao 01 June 2018 (has links)
No description available.

Page generated in 0.056 seconds