• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 13
  • 5
  • 1
  • Tagged with
  • 72
  • 72
  • 72
  • 41
  • 36
  • 20
  • 20
  • 19
  • 18
  • 17
  • 15
  • 14
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Designing Smarter Stormwater Systems at Multiple Scales with Transit Time Distribution Theory and Real-Time Control

Parker, Emily Ann 17 June 2021 (has links)
Urban stormwater runoff is both an environmental threat and a valuable water resource. This dissertation explores the use of two stormwater management strategies, namely green stormwater infrastructure and stormwater real-time control (RTC), for capturing and treating urban stormwater runoff. Chapter 2 focuses on clean bed filtration theory and its application to fecal indicator bacteria removal in experimental laboratory-scale biofilters. This analysis is a significant step forward in our understanding of how physicochemical theories can be melded with hydrology, engineering design, and ecology to improve the water quality benefits of green infrastructure. Chapter 3 focuses on the novel application of unsteady transit time distribution (TTD) theory to solute transport in a field-scale biofilter. TTD theory closely reproduces experimental bromide breakthrough concentrations, provided that lateral exchange with the surrounding soil is accounted for. TTD theory also provides insight into how changing distributions of water age in biofilter storage and outflow affect key stormwater management endpoints, such as biofilter pollutant treatment credit. Chapter 4 focuses on stormwater RTC and its potential for improving runoff capture and water supply in areas with Mediterranean climates. We find that the addition of RTC increases the percent of runoff captured, but does not increase the percent of water demand satisfied. Our results suggest that stormwater RTC systems need to be implemented in conjunction with context-specific solutions (such as spreading basins for groundwater recharge) to reliably augment urban water supply in areas with uneven precipitation. Through a combination of modeling and experimental studies at a range of scales, this dissertation lays the foundation for future integration of TTD theory with RTC to improve regional stormwater management. / Doctor of Philosophy / Urban stormwater runoff contains a variety of pollutants. Conventional storm drain systems are designed to move stormwater as quickly as possible away from cities, delivering polluted runoff to local streams, rivers, and the coastal ocean – and discarding a valuable freshwater resource. By contrast, green stormwater infrastructure captures and retains stormwater as close as possible to where the rain falls. Green stormwater infrastructure can also help remove pollutants from stormwater through physical, chemical, and biological treatment processes. This dissertation describes two modeling approaches for understanding and predicting pollutant removal processes in green stormwater infrastructure (Chapters 2 and 3). Chapter 4 explores the implementation of smart stormwater systems, which use automated controllers and sensors to adaptively address stormwater management challenges. Through a combination of modeling and experimental studies at a range of scales, this dissertation lays the foundation for future improvements to regional stormwater management.
62

Management of Urban Stormwater at Block-Level (MUST-B): A New Approach for Potential Analysis of Decentralized Stormwater Management Systems

Khurelbaatar, Ganbaatar, van Afferden, Manfred, Ueberham, Maximilian, Stefan, Michael, Geyler, Stefan, Müller, Roland A. 09 May 2023 (has links)
Cities worldwide are facing problems to mitigate the impact of urban stormwater runoff caused by the increasing occurrence of heavy rainfall events and urban re-densification. This study presents a new approach for estimating the potential of the Management of Urban STormwater at Block-level (MUST-B) by decentralized blue-green infrastructures here called low-impact developments (LIDs) for already existing urban environments. The MUST-B method was applied to a study area in the northern part of the City of Leipzig, Germany. The Study areas was divided into blocks smallest functional units and considering two different soil permeability and three different rainfall events, seven scenarios have been developed: current situation, surface infiltration, swale infiltration, trench infiltration, trough-trench infiltration, and three different combinations of extensive roof greening, trough-trench infiltration, and shaft infiltration. The LIDs have been simulated and their maximum retention/infiltration potential and the required area have been estimated together with a cost calculation. The results showed that even stormwater of a 100 year rainfall event can be fully retained and infiltrated within the blocks on a soil with low permeability (kf = 10−6 m/s). The cost and the required area for the LIDs differed depending on the scenario and responded to the soil permeability and rainfall events. It is shown that the MUST-B method allows a simple down- and up-scaling process for different urban settings and facilitates decision making for implementing decentralized blue-green-infrastructure that retain, store, and infiltrate stormwater at block level.
63

Characterizing the performance of low impact development under changes in climate and urbanization

Yang, Wenyu 03 January 2024 (has links)
Over the past decades, climate change and urbanization have altered the regional hydro-environments, causing a series of stormwater management problems including urban flood and non-point pollution. Low impact development (LID) has been identified as a sustainable strategy for stormwater management. However, given the complex impacts of climate change and urbanization on hydro-environments, the performance of LID strategy under future changes remains largely unexplored. Accordingly, this research characterized the LID performance under changes in climate and urbanization. To provide an additional reference to sustainable stormwater management, the following specific topics were addressed: (1) Through hydraulic and water quality modeling, the LID performances of flood mitigation and pollution removal were systematically evaluated at the city scale. (2) Through uncertainty analysis, the impact of model parameter uncertainty on the LID performance was taken into account. (3) Through sensitivity analysis, the impact of LID technical parameters (e.g., surface features, soil textures) on the LID performance was quantified. (4) Through scenario analysis, the LID performances under different hydrological patterns were compared. (5) Through spatial analysis, the distribution of LID performance on different land-cover types was determined. (6) Through adopting general circulation model (GCM) projections, the LID performance under future climate scenarios with different representative concentration pathways (RCPs) was investigated. (7) Through adopting integrated assessment model (IAM) projections, the LID performance under future urbanization scenarios with different shared socioeconomic pathways (SSPs) was explored. (8) By coupling climate and urbanization projections with land-cover distribution, the spatiotemporal trends of LID performance in the future were characterized.:Table of Contents List of Abbreviations VII List of Peer-Reviewed Publications on the Ph.D. Topic IX List of Co-authored Peer-Reviewed Publications on the Ph.D. Topic X 1 General Introduction 1 1.1 Background 1 1.2 Objectives 3 1.3 Innovation and Contribution to the Knowledge 3 1.4 Outline of the Dissertation 4 1.5 References 5 2 Literature Review 9 2.1 Hydraulic and Water Quality Modeling 9 2.1.1 Hydraulic Model 9 2.1.2 Water Quality Model 10 2.2 Low Impact Development (LID) 10 2.2.1 LID Practice 10 2.2.2 LID Performance 11 2.3 Performance Evaluation 13 2.3.1 Scenario Analysis 13 2.3.2 Spatial Analysis 13 2.3.3 Uncertainty Analysis 14 2.3.4 Sensitivity Analysis 14 2.4 Future Changes in Climate and Urbanization 15 2.4.1 Climate Change 15 2.4.2 Future Urbanization 16 2.5 References 17 3 Impact of Technical Factors on LID Performance 27 3.1 Introduction 28 3.2 Methods 30 3.2.1 Study Area 30 3.2.2 Model Description 31 3.2.2.1 Model Theory 31 3.2.2.2 Model Construction 31 3.2.2.3 Model Calibration and Validation 32 3.2.2.4 Model Uncertainty Analysis by GLUE Method 34 3.2.3 Hydrological Pattern Design 35 3.2.4 LID Strategy Design 35 3.2.4.1 Implementation of LID Practices 35 3.2.4.2 Sensitivity Analysis by Sobol’s Method 36 3.2.5 Correlation Analysis Using a Self-Organizing Map 37 3.2.6 Description of the RDS Load Components 37 3.3 Results 38 3.3.1 RDS Migration and Distribution in Baseline Strategy 38 3.3.1.1 RDS Migration under Hydrological Scenarios 38 3.3.1.2 RDS Distribution on Land-Cover Types 39 3.3.2 RDS Removal in LID Strategies 40 3.3.2.1 RDS Removal by LID Strategies 40 3.3.2.2 Spatial Distribution of the RDS Removal 42 3.3.2.3 LID Parameter Sensitivity Analysis Result 43 3.4 Discussion 45 3.4.1 Factors Influencing RDS Migration in the Baseline Strategy 45 3.4.2 RDS Removal Performance by LID Strategy 46 3.5 Conclusions 47 3.6 References 47 4 Impact of Hydro-Environmental Factors on LID Performance 53 4.1 Introduction 54 4.2 Methods 56 4.2.1 Study Area 56 4.2.2 Modeling Approach 56 4.2.2.1 Model Theory 56 4.2.2.2 Model Construction 56 4.2.2.3 Model Calibration and Validation 57 4.2.2.4 Model Uncertainty Analysis 57 4.2.3 LID Performance Analysis 58 4.2.3.1 LID Practice Implementation 58 4.2.3.2 LID Performance Evaluation 58 4.2.4 Hydrological Pattern Analysis 59 4.2.4.1 Scenario of ADP Length 59 4.2.4.2 Scenario of Rainfall Magnitude 59 4.2.4.3 Scenario of Long-Term pre-Simulation 60 4.2.5 Sensitivity Analysis of Hydrological Scenarios 60 4.3 Results 61 4.3.1 LID Performance under Different ADP Lengths 61 4.3.2 LID Performance under Different Rainfall Magnitudes 62 4.3.3 Spatial Distribution of LID Performance 63 4.3.4 Sensitivities of LID Performance to ADP Length and Rainfall Magnitude 66 4.4 Discussion 68 4.4.1 Impact of ADP Length and Rainfall Magnitude on LID Performance 68 4.4.2 Spatial Heterogeneity of LID Performance 68 4.4.3 Research Implications 69 4.5 Conclusions 70 4.6 References 71 5 Impact of Future Climate Patterns on LID Performance 77 5.1 Introduction 78 5.2 Methods 80 5.2.1 Study Area 80 5.2.2 Hydraulic and Water Quality Model 80 5.2.2.1 Model Development 80 5.2.2.2 Model Calibration and Validation 81 5.2.3 Climate Change Scenario Analysis 81 5.2.3.1 GCM Evaluation 81 5.2.3.2 Greenhouse Gas (GHG) Concentration Scenario 82 5.2.3.3 GCM Downscaling 83 5.2.4 LID Performance Analysis 83 5.2.4.1 Implementation of LID Practices 83 5.2.4.2 Evaluation of LID Performance 84 5.2.4.3 Sensitivity Analysis on LID Performance 86 5.3 Results 86 5.3.1 Hydrological Characteristics under Future Climate Scenarios 86 5.3.2 LID Performance under Future Climate Scenarios 87 5.3.2.1 LID Short-Term Performance 87 5.3.2.2 LID Long-Term Performance 90 5.3.3 Impact of ADP Length and Rainfall Magnitude on LID Performance 92 5.3.3.1 LID Performance Uncertainty 92 5.3.3.2 Spatial Distribution of LID Performance 93 5.3.3.3 Sensitivity of LID Performance to Climate Change 95 5.4 Discussion 97 5.4.1 LID Performance in Short-Term Extremes and Long-Term Events 97 5.4.2 Impact of Climate Change on LID Performance 97 5.4.3 Research Implications 99 5.5 Conclusions 100 5.6 References 100 6 Impact of Climate and Urbanization Changes on LID Perfor-mance 109 6.1 Introduction 110 6.2 Methods 112 6.2.1 Study Area 112 6.2.2 Modeling Approach 112 6.2.2.1 Model Development 112 6.2.2.2 Model Calibration and Validation 113 6.2.3 Future Scenario Derivation 113 6.2.3.1 Climate Change Scenario 113 6.2.3.2 Urbanization Scenario 115 6.2.4 Flood Exposure Assessment 115 6.2.5 Implementation and Evaluation of LID Strategy 117 6.2.5.1 Implementation Scheme of LID Strategy 117 6.2.5.2 Performance Evaluation of LID Strategy 117 6.3 Results 118 6.3.1 Flood Exposure in Baseline and Future Scenarios 118 6.3.1.1 Hydrological Change in Future Climate Scenarios 118 6.3.1.2 Catchment Change in Future Urbanization Scenarios 118 6.3.1.3 Population and GDP Exposures to Flood in Future 121 6.3.2 Flood Exposure with Consideration of LID Strategy 123 6.3.2.1 Runoff Mitigation Performance of LID Strategy 123 6.3.2.2 Peak Mitigation Performance of LID Strategy 124 6.3.2.3 Population and GDP Exposures to Flood under LID Strategy 125 6.4 Discussion 126 6.4.1 Climate Change and Urbanization Exacerbated Flood Exposure Risk 126 6.4.2 LID Strategy Mitigated Flood Exposure Risk 126 6.5 Conclusions 127 6.6 References 127 7 Discussion and General Conclusions 133 7.1 Stormwater Management Performance of LID Strategy 133 7.2 Impact of Influencing Factors on LID Performance 134 7.3 LID Performance under Future Changes 135 7.4 Research Implications 136 7.5 References 137 8 Outlook of Future Research 139 8.1 Optimization of LID Performance 139 8.2 Cross-regional Study on Future Changes 139 8.3 Macro-scale Flood Risk Management 140 8.4 References 141 9 Appendices 143 9.1 Appendix for Chapter 3 143 9.1.1 The Determination of the GLUE Criteria 143 9.1.2 Model Uncertainty Analysis 143 9.1.3 The LID Installation Location 144 9.1.4 Figures 145 9.1.5 Tables 147 9.2 Appendix for Chapter 4 153 9.2.1 Scenario of Long-term pre-Simulation 153 9.2.2 Figures 153 9.2.3 Tables 158 9.3 Appendix for Chapter 5 164 9.3.1 Tables 164 9.4 Appendix for Chapter 6 169 9.4.1 Figures 169 9.4.2 Tables 170 9.5 Data Source 177 9.6 References 178
64

Blue-Green Infrastructure on the Move: How Resilience Concepts Travel Between Cities / Blå-grön infrastruktur i farten: Hur motståndskraftskonceptet färdas mellan städer

Suteerasan, Sutthi January 2021 (has links)
Over the past decades, the fast-changing global climate poses a significant challenge to many cities around the world to embrace resilience concepts, whereby a safe-to-fail planning approach replaces traditional fail-safe practices. The change in perspectives has seen an increase in climate-adapted infrastructural projects being integrated with the new urban planning agendas across the world. The investigation conducted was designed to understand the process of how resilience concepts travel between different cities, by investigating the actors who move policy knowledge, their roles in it, as well as the knowledge transfer process mechanism that is responsible for the movement of such policies. The investigation took advantage of a scoping study technique to answer the research questions, using mostly secondary data and an interview to verify the secondary sources. The findings and the discussion provided insights on who is involved in resilience policies and how these policies are transferred from one place to another. The investigation uncovered the influence policy mobilizers has on the movement of policy knowledge, as well as how the mobilization of policy knowledge can both be beneficial or detrimental, depending on the way it was moved or implemented. / Under de senaste decennierna utgör det snabba föränderliga globala klimatet en betydande utmaning för många städer runt om i världen med att anamma motståndskraftskoncept, där en planeringsstrategi med säkerhet att misslyckas ersätter traditionella felsäkra metoder. Förändringen i perspektiv har ökat klimatanpassade infrastrukturprojekten som integrerats med nya stadsplaneringsagendorna över hela världen. Studien genomfördes för att få en förståelse av hur motståndskraftskonceptet färdas mellan olika städer och detta genomfördes genom att undersöka de aktörer som förflyttar politisk kunskap och deras roller i den samt den kunskapsöverföringsmekanism som är ansvarig för rörelsen av sådan politik. Studien utnyttjade en scoping-studieteknik för att få svar på forskningsfrågorna, med mestadels sekundär data och en intervju för att verifiera sekundärkällorna. Resultaten och diskussionen gav insikter om vem som är inblandad i motståndskraft och hur policy överförs från en plats till en annan. Studien avslöjade även inflytande av politiskt mobilisering och kunskap som både kan vara fördelaktig eller skadlig beroende på hur den flyttades eller genomfördes.
65

Estimation of stormwater runoff mitigation in Lucas County, Ohio using SWMM modeling and GIS analysis

Dietrich, Anthony Thomas January 2015 (has links)
No description available.
66

An Expert System Approach to Best Management Practice Selection for Nominal Scale Low-Impact Redevelopments

Dicken, Christopher L. 26 September 2011 (has links)
No description available.
67

Runoff Reduction Benefits of Retrofitted Enhanced or Extended-Depressed Tree Pits of the Beasley and Landsdale Neighbourhoods in Hamilton, Ontario

Rawlins, Robert January 2019 (has links)
This research explores the potential of retrofitting enhanced or extended-depressed tree pits (ETPs/EDTPs) around existing street trees to bolster pre-development hydrological processes in two Hamiltonian neighbourhoods to help satisfy their social, economic, and environmental needs and work toward the Sustainable Development Goals (SDGs). Using QGIS and openly available data to create catchment areas, establish the feasibility of a 20:1 catchment to pit area ratio, and investigate the performance of five available structured soil cells, the innovative Analytical Probabilistic Model (APM) for Bioretention systems was adapted to conduct a parametric sensitivity analysis and subsequently compute the Road Runoff Reduction Efficiency (RRRE) of the designs under different climatic scenarios. The catchment to pit area ratio, design storage depth, and final infiltration rate were found to have a significant impact on the RRRE while the average evapotranspiration rate did not. Based on a 75% efficiency cut-off, and assuming a 20:1 catchment to pit area ratio, the shallowest two depths were deemed ineffective in all final infiltration rate scenarios while the largest depth provided efficiencies greater than 75% runoff reduction even when faced with the lowest rate of 6 mm hr-1. Comparing the RRRE during current climatic conditions to a simulated 2050s winter suggests that the RRRE of the deepest implementation is impacted only half as much as the shallowest; larger systems are more resilient. This research has reinforced the versatility and efficiency of the Analytical Probabilistic Model for modeling system performance of LIDs and ETPs, supports the prominent findings of the efficacy of enhanced tree pits to significantly contribute to urban stormwater management and re-establish more natural and sustainable hydrologic processes, and promotes them as a key to reaching the SDGs in Hamilton, Ontario. / Thesis / Master of Applied Science (MASc) / The Sustainable Development Goals call for action from every member of society. This research explores the potential Stormwater Management Engineers have to do so by retrofitting street trees with Enhanced or Extended-Depressed Tree Pits, increasing rooting volume and offering the tree more water from the adjacent road to simultaneously meet the natural needs of the tree and reduce urban runoff.
68

Design of Low Impact Development and Green Infrastructure at Flood Prone Areas in the City of Miami Beach, FLORIDA, USA

Alsarawi, Noura 29 June 2018 (has links)
This thesis investigates the effectiveness of Low Impact Development Infrastructure (LIDI) and Green Infrastructure (GI) in reducing flooding resulting from heavy rainfall events and sea-level rise, and in improving stormwater quality in the City of Miami Beach (CMB). InfoSWMM was used to simulate the 5, 10, and 100-year, 24-hour storm events, total suspended solids (TSS), biochemical oxygen demand (BOD), and chemical oxygen demand (COD) loadings, and in evaluating the potential of selected LIDI and GI solutions in North Shore neighborhood. Post-development results revealed a decrease of 48%, 46%, and 39% in runoff, a decrease of 57%, 60%, and 62% in TSS, a decrease of 82%, 82%, and 84% in BOD, and a decrease of 69%, 69%, and 70% in COD loadings. SWMM 5.1 was also used to simulate the king tide effect in a cross section in Indian Creek Drive. The proposed design simulations successfully demonstrated the potential to control flooding, showing that innovative technologies offer the city opportunities to cope with climate impacts. This study should be most helpful to the CMB to support its management of flooding under any adaptation scenarios that may possibly result from climate changes. Flooding could be again caused as a result of changes in inland flooding from precipitation patterns or from sea-level rise or both.
69

A hydrologic assessment of using low impact development to mitigate the impacts of climate change in Victoria, BC, Canada

Jensen, Christopher Allen 29 August 2012 (has links)
The purpose of this study is to determine if Low Impact Development (LID) can effectively mitigate flooding under projected climate scenarios. LID relies on runoff management measures that seek to control rainwater volume at the source by reducing imperviousness and retaining, infiltrating and reusing rainwater. An event-driven hydrologic/hydraulic model was developed to simulate how climate change, land use and LID scenarios may affect runoff response in the Bowker Creek watershed, a 10km2 urbanized catchment located in the area of greater Victoria, British Columbia, Canada. The first part of the study examined flood impacts for the 2050s (2040-2069) following the A2 emissions scenario. For the 24-hour, 25-year local design storm, results show that projected changes in rainfall intensity may increase flood extents by 21% to 50%. When combined with continued urbanization flood extents may increase by 50% to 72%. The second part of the study identified potential locations for three LID treatments (green roofs, rain gardens and top soil amendments) and simulated their effect on peak in-stream flow rates and flood volumes. Results indicate that full implementation of modeled LID treatments can alleviate the additional flooding that is associated with the median climate change projection for the 5-year, 10-year and 25-year rainfall events. For the projected 100-year event, the volume of overland flood flows is expected to increase by 1%. This compares favourably to the estimated 29% increase without LID. In term of individual performance, rain gardens had the greatest hydrologic effect during more frequent rainfall events; green roofs had minimal effect on runoff for all modelled events; and top soil amendments had the greatest effect during the heaviest rainfall events. The cumulative performance of LID practices depends on several variables including design specifications, level of implementation, location and site conditions. Antecedent soil moisture has a considerable influence on LID performance. The dynamic nature of soil moisture means that at times LID could meet the mitigation target and at other times it may only partially satisfy it. Future research should run continuous simulations using an appropriately long rainfall record to establish the probabilities of meeting performance requirements. In general, simulations suggest that if future heavy rainfall events follow the median climate change projection, then LID can be used to maintain or reduce flood hazard for rainfall events up to the 25-year return period. This study demonstrates that in a smaller urban watershed, LID can play an important role in reducing the flood impacts associated with climate change. / Graduate
70

Residential Low Impact Development Practices: Literature Review and Multicriteria Decision Analysis Framework for Detached Houses

Sumaiya, Ummay January 2021 (has links)
Low Impact Development (LID) is a sustainable stormwater management approach that aims to control runoff close to its source, mimicking the natural hydrological processes such as infiltration and storage. It is being adopted by many cities, where its implementation is rapidly evolving. The LID practices are small-scale measures; therefore, they need to be widely implemented to impact significantly. The selection of LIDs depends on the land use and characteristics of the area of interest. This study focuses on residential LIDs. First, a systematic and bibliometric literature review is conducted on the residential LIDs articles published up to the year 2020; a total of 94 papers were found in the Web of Science. This review resulted that LID implementation in residential areas still needs to be investigated. To assist the City, engineers, and policy-makers in implementing the suitable LIDs for detached houses, a multi-criteria decision analysis framework incorporating a hydrological model is developed in this study. The commonly used LIDs were identified, which are rain gardens, permeable pavement, rain barrels, soakaways. Seven criteria were selected – runoff depth reduction rate, peak runoff reduction rate, installation cost, maintenance cost, retrofit cost, life cycle, and aesthetical view. For the properties of the single-detached house and LIDs, the standards of Credit Valley Conservation (CVC) and Toronto and Region Conservation Authority (TRCA) were followed. The proposed decision-making framework also was applied to a case study. This framework is still in the preliminary stage, thus holds the potential to convert into a tool that will be handy enough for the homeowners and consume less time. / Thesis / Master of Applied Science (MASc)

Page generated in 0.142 seconds