• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 9
  • 1
  • 1
  • Tagged with
  • 63
  • 63
  • 63
  • 28
  • 28
  • 17
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Ultra-low temperature dilatometry

Dunn, John Leonard January 2010 (has links)
This thesis presents research of two novel magnetic materials, LiHoF4 and Tb2Ti2O7. Experiments were performed at low temperatures and in an applied magnetic field to study thermal expansion and magnetostriction using a capacitive dilatometer designed during this project. This thesis presents 3 distinct topics. This manuscript begins with a thermodynamic description of thermal expansion and magnetostriction. The design of a capacitive dilatometer suitable for use at ultra-low temperatures and in high magnetic fields is presented. The thermal expansion of oxygen free high conductivity copper is used as a test of the absolute accuracy of the dilatometer. The first material studied using this dilatometer was LiHoF4. Pure LiHoF4 is a dipolar coupled Ising ferromagnet and in an applied transverse magnetic field is a good representation of the transverse field Ising model. An ongoing discrepancy between theoretical and experimental work motivates further study of this textbook material. Presented here are thermal expansion and magnetostriction measurements of LiHoF4 in an applied transverse field. We find good agreement with existing experimental work. This suggests that there is some aspect of LiHoF4 or the effect of quantum mechanical fluctuations at finite temperatures which is not well understood. The second material studied is the spin liquid Tb2Ti2O7. Despite theoretical predictions that Tb2Ti2O7 will order at finite temperature, a large body of experimental evidence demonstrates that spins within Tb2Ti2O7 remain dynamic to the lowest temperatures studied. In addition Tb2Ti2O7 also exhibits anomalous thermal expansion below 20K, giant magnetostriction, and orders in an applied magnetic field. Thermal expansion and magnetostriction measurements of Tb2Ti2O7 are presented in applied longitudinal and transverse fields. Zero-field thermal expansion measurements do not repeat the previously observed anomalous thermal expansion. A large feature is observed in thermal expansion at 100mK, in rough agreement with existing experimental work. Longitudinal and transverse magnetic fields were applied to Tb2Ti2O7. Longitudinal magnetostriction measurements show qualitatively di erent behavior than previous observations. These measurements were taken along di erent crystal axes so direct comparison cannot be made. Thermal expansion measurements in an applied transverse field show evolution with the strength of the applied field. This evolution may relate to an ordering transition, however difficulties in repeatability in a transverse field require that these results be repeated in an improved setup.
32

Thermoelectric and Heat Flow Phenomena in Mesoscopic Systems

Matthews, Jason E. 12 1900 (has links)
xvii, 189 p. : ill. (some col.) / Low-dimensional electronic systems, systems that are restricted to single energy levels in at least one of the three spatial dimensions, have attracted considerable interest in the field of thermoelectric materials. At these scales, the ability to manipulate electronic energy levels offers a great deal of control over a device's thermopower, that is, its ability to generate a voltage due to a thermal gradient. In addition, low-dimensional devices offer increased control over phononic heat flow. Mesoscale geometry can also have a large impact on both electron and phonon dynamics. Effects such as ballistic transport in a two-dimensional electron gas structure can lead to the enhancement or attenuation of electron transmission probabilities in multi-terminal junctions. The first half of this dissertation investigates the transverse thermoelectric properties of a four-terminal ballistic junction containing a central symmetry-breaking scatterer. It is believed that the combined symmetry of the scatterer and junction is the key component to understanding non-linear and thermoelectric transport in these junctions. To this end, experimental investigations on this type of junction were carried out to demonstrate its ability to generate a transverse thermovoltage. To aid in interpreting the results, a multi-terminal scattering-matrix theory was developed that relates the junction's non-linear electronic properties to its thermoelectric properties. The possibility of a transverse thermoelectric device also motivated the first derivation of the transverse thermoelectric efficiency. This second half of this dissertation focuses on heat flow phenomena in InAs/InP heterostructure nanowires. In thermoelectric research, a phononic heat flow between thermal reservoirs is considered parasitic due to its minimal contribution to the electrical output. Recent experiments involving heterostructure nanowires have shown an unexpectedly large heat flow, which is attributed in this dissertation to an interplay between electron-phonon interaction and phononic heat flow. Using finite element modeling, the recent experimental findings have provided a means to probe the electron-phonon interaction in InAs nanowires. In the end, it is found that electron-phonon interaction is an important component in understanding heat flow at the nanoscale. This dissertation includes previously unpublished co-authored material. / Committee in charge: Dr. Richard Taylor, Chair; Dr. Heiner Linke, Advisor; Dr. David Cohen, Member; Dr. John Toner, Member; Dr. David Johnson, Outside Member
33

Quantifying the Properties of Elastic, Liquid Metal Based Thermal Interface Materials

January 2017 (has links)
abstract: Advancements in thermal interface materials (TIMs) allows for the creation of new and more powerful electronics as they increase the heat transfer from the component to the heat sink. Current industrial options provide decent heat transfer, but the creation of TIMs with higher thermal conductivities is needed. In addition, if these TIMs are elastic in nature, their effectiveness can greatly increase as they can deal with changing interfaces without degradation of their properties. The research performed delves into this idea, creating elastic TIMs using liquid metal (LM), in this case galinstan, along with other matrix particles embedded in Polydimethylsiloxane (PDMS) to create an easy to use, relatively inexpensive, thermally conductive, but electrically insulative, pad with increased thermal conductivity from industrial solutions. The pads were created using varying amounts of LM and matrix materials ranging from copper microspheres to diamond powder mixed into PDMS using a high-speed mixer. The material was then cast into molds and cured to create the pads. Once the pads were created, the difficulty came in quantifying their thermal properties. A stepped bar apparatus (SBA) following ASTM D5470 was created to measure the thermal resistance of the pads but it was determined that thermal conductivity was a more usable metric of the pads’ performance. This meant that the pad’s in-situ thickness was needed during testing, prompting the installation of a linear encoder to measure the thickness. The design and analysis of the necessary modification and proposed future design is further detailed in the following paper. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2017
34

Superconductivity in the proximity of a quantum critical point

Logg, Peter William January 2015 (has links)
In a many-body fermionic system, the suppression of continuous transitions to absolute zero can result in a low temperature quantum fluid which deviates strongly from typical metallic behaviour; unconventional superconductivity can be induced by the strange metal region surrounding the zero-temperature phase transition. In this thesis we focus on three systems which demonstrate a highly tunable phase transition, with the aim of pushing them toward the border of a zero-temperature phase transition, and potentially superconductivity. CeAgSb2 is a uniaxial 4f ferromagnet, where physical pressure or a transverse field may be used to tune the magnetic transition towards T = 0 K. Our investigations, however, did not reveal the presence of superconductivity. It is likely that the field tuned transition does not correspond to a true critical point, whilst the high pressure region may be occupied by an antiferromagnetic phase, with the true critical point at higher pressures. However, other interesting features emerge in the electrical resistivity and AC-susceptibility, along with novel thermodynamic signatures linking the magnetisation to the specific heat. The doping series Lu(1-x)YxFe2Ge2 shows an antiferromagnetic transition which is suppressed to absolute zero at a critical concentration x_c=0.2. YFe2Ge2 displays anomalous low temperature behaviour consistent with the proximity to quantum critical fluctuations, along with a superconducting transition which appears in the electrical resistivity beneath a critical temperature of T_c ~ 1.7 K. Using low temperature DC magnetisation measurements, we show that this is a bulk effect, and that the superconductivity in YFe2Ge2 is of type-II. The thermodynamic and BCS properties of the superconducting phase are analysed in line with the parameters we extract experimentally. The superconducting 3-4-13 stannides (Ca,Sr)3Ir4Sn13 show a high temperature structural transition which may be suppressed by the application of hydrostatic pressure or effective chemical pressure. A superconducting dome is found, which appears to peak near where the structural transition extrapolates to zero temperature. Anomalous exponents are seen in the electrical resistivity over a wide temperature range. We investigate the influence of pressure on the superconducting critical temperature in Ca3Ir4Sn13 and the related compound Co3Ca4Sn13, along with an analysis of the upper critical field and flux-line phenomena in Ca3Ir4Sn13 and Sr3Ir4Sn13.
35

Matematické modelování vybraných problémů v mechanice kryogenních tekutin / Mathematical modelling of selected problems in cryogenic fluid mechanics

Hodic, Jan January 2016 (has links)
The dynamics of low-temperature fluids, such as superfluid helium 4, is an open scientific problem. The experimental study of similarities and differences between quantum (superfluid) and classical (viscous) flows is specifically an active research field, which already led to significant progress in our phenomenological understanding of the underlying physics. It also revealed that a comprehensive theoretical description is still missing, as, for example, in the case of the observed behaviour of moving bodies in quantum flows. The work aim is to derive the existence theory for the weak solution of a relevant system of equations based on the Landau model of superfluid helium 4 and appropriate numerical schemes to solve these equations.
36

Matematické modelování vybraných problémů v mechanice kryogenních tekutin / Mathematical modelling of selected problems in cryogenic fluid mechanics

Hodic, Jan January 2018 (has links)
The dynamics of low-temperature fluids, such as superfluid helium 4, is an open scientific problem. The experimental study of similarities and differences between quantum (superfluid) and classical (viscous) flows is specifically an active research field, which already led to significant progress in our phenomenological understanding of the underlying physics. It also revealed that a comprehensive theoretical description is still missing, as, for example, in the case of the observed behaviour of moving bodies in quantum flows. The work aim is to derive the existence theory for the weak ort he strong solution of a relevant system of equations based on the Landau model of superfluid helium 4 and appropriate properties of the solution.
37

Low Temperature Characterization of Foamed Warm Mix Asphalt

Alhasan, Ahmad Abdulraheem 04 September 2013 (has links)
No description available.
38

Temperature Dependence of Current Transport in Metal-SWNT Structures

Daine, Robert John January 2015 (has links)
No description available.
39

Exploring 2D Metal-Insulator Transition in p-GaAs Quantum Well with High rs

Qiu, Lei 21 February 2014 (has links)
No description available.
40

Microscopie à micro-squid : étude de la coexistence de la supraconductivité et du ferromagnétisme dans le composé UCoGe / Magnetic imaging of unconventional superconductors by scanning SQUID microscopy

Hykel, Danny 15 February 2011 (has links)
Pendant la première année le microscope à microSQUID était mis en fonctionnement. On a avancé sur le plan cryogenique (dilution) et électronique (programmation de boucles de régulation et d'une détection synchrone). Les composants étaient testés à température ambiante et on est en train de tout tester à basse température. Une méthode était conçu pour déterminer la longueur de pénétration du champ magnétique dans un supraconducteur avec les données qui pourront être fait avec notre microscope. Ceci va être utilisé pour l'échantillon PrOs4Sb12. Il s'agit de trancher le débat sur la nature multibande de la supraconductivité dans ce composé. En deuxième année le developpement a continué, en particulière le microscope était mis à froid. Des différents problèmes due aux basses températures (mouvement de moteur, thermalisation, câblage) ont été resolues. Ensuite on a avancé sur le plan informatique, notamment le contrôle de differents composants. Pendant le deuxième année quelques images magnétique ont été faites, validant le concept. En troisième année on a commence a mésurer des domaines magnetiques d'un supraconducteur ferromagnetique (UCoGe) en Avril - Aout. On a obtenu des resultats tres interessants. Le même dispositif sera ainsi opérationnel pour l'imagerie de domaines dans des bolomètres supraconducteurs. / Pendant cette thèse un microscope à SQUID et AFM à balayage, l'électronique et les logiciels de contrôle ont été conçus. Pour la calibration des mesures sur un film de niobium (avec des motifs) ont été effectuées, montrant la possibilité de faire des image de la topographie at la distribution du champ magnétique au dessus de l'échantillon simultanément. On présent les premières image dans l'espace réel de la structure de domaines dans le ferro supraconducteur UCoGe, un échantillon basé sur l'uranium (fermion lourd) avec un transition supra à environ 0.5K à la pression ambiante. On montre l'évolution de la transition ferromagnétique en fonction de la température. La microscope a été aussi utilisé pour des mésures sur un couche mince de Rhenium, un supraconducteur conventionel. On a obtenu une estimation pour la force de piégeage de vortex on utilisant l'interaction entre SQUID et vortex. En plus, on a déterminé la longueur de pénétration en fonction de la température.

Page generated in 0.1038 seconds