Spelling suggestions: "subject:"cow density disparity check (LDPC)"" "subject:"bow density disparity check (LDPC)""
11 |
LDPC Coded OFDM-IDMA SystemsLu, Kuo-sheng 05 August 2009 (has links)
Recently, a novel technique for multi-user spread-spectrum mobile systems, the called interleave-division multiple-access (IDMA) scheme, was proposed by L. Ping etc. The advantage of IDMA is that it inherits many special features from code-division multiple-access (CDMA) such as diversity against fading and mitigation of the other-cell user interference. Moreover, it¡¦s capable of employing a very simple chip-by-chip iterative multi-user detection strategy. In this thesis, we investigate the performance of combining IDMA and orthogonal frequency-division multiplexing (OFDM) scheme. In order to improve the bit error rate performance, we applied low-density parity-check (LDPC) coding to the proposed scheme, named by LDPC Coded OFDM-IDMA Systems. Based on the aid of iterative multi-user detection algorithm, the multiple-access interference (MAI) and inter-symbol interference (ISI) could be canceling efficiently. In short, the proposed scheme provides an efficient solution to high-rate multiuser communications over multipath fading channels.
|
12 |
Αλγόριθμοι επαναληπτικής αποκωδικοποίησης κωδικών LDPC και μελέτη της επίδρασης του σφάλματος κβαντισμού στην απόδοση του αλγορίθμου Log Sum-ProductΚάνιστρας, Νικόλαος 25 May 2009 (has links)
Οι κώδικες LDPC ανήκουν στην κατηγορία των block κωδικών. Πρόκειται για κώδικες ελέγχου σφαλμάτων μετάδοσης και πιο συγκεκριμένα για κώδικες διόρθωσης σφαλμάτων. Αν και η εφεύρεσή τους (από τον Gallager) τοποθετείται χρονικά στις αρχές της δεκαετίας του 60, μόλις τα τελευταία χρόνια κατάφεραν να κεντρίσουν το έντονο ενδιαφέρον της επιστημονικής-ερευνητικής κοινότητας για τις αξιόλογες επιδόσεις τους. Πρόκειται για κώδικες ελέγχου ισοτιμίας με κυριότερο χαρακτηριστικό τον χαμηλής πυκνότητας πίνακα ελέγχου ισοτιμίας (Low Density Parity Check) από τον οποίο και πήραν το όνομά τους. Δεδομένου ότι η κωδικοποίηση των συγκεκριμένων κωδικών είναι σχετικά απλή, η αποκωδικοποίηση τους είναι εκείνη η οποία καθορίζει σε μεγάλο βαθμό τα χαρακτηριστικά του κώδικα που μας ενδιαφέρουν, όπως είναι η ικανότητα διόρθωσης σφαλμάτων μετάδοσης (επίδοση) και η καταναλισκόμενη ισχύς. Για το λόγο αυτό έχουν αναπτυχθεί διάφοροι αλγόριθμοι αποκωδικοποίησης, οι οποίοι είναι επαναληπτικοί. Παρόλο που οι ανεπτυγμένοι αλγόριθμοι και οι διάφορες εκδοχές τους δεν είναι λίγοι, δεν έχει ακόμα καταστεί εφικτό να αναλυθεί θεωρητικά η επίδοσή τους.
Στην παρούσα εργασία παρατίθενται οι κυριότεροι αλγόριθμοι αποκωδικοποίησης κωδικών LDPC, που έχουν αναπτυχθεί μέχρι σήμερα. Οι αλγόριθμοι αυτοί υλοποιούνται και συγκρίνονται βάσει των αποτελεσμάτων εξομοιώσεων. Ο πιο αποδοτικός από αυτούς είναι ο αποκαλούμενος αλγόριθμος log Sum-Product και στηρίζει σε μεγάλο βαθμό την επίδοσή του σε μία αρκετά πολύπλοκή συνάρτηση, την Φ(x). Η υλοποίηση της τελευταίας σε υλικό επιβάλλει την πεπερασμένη ακρίβεια αναπαράστασής της, δηλαδή τον κβαντισμό της. Το σφάλμα κβαντισμού που εισάγεται από την διαδικασία αυτή θέτει ένα όριο στην επίδοση του αλγορίθμου. Η μελέτη που έγινε στα πλαίσια της εργασίας οδήγησε στον προσδιορισμό δύο μηχανισμών εισαγωγής σφάλματος κβαντισμού στον αλγόριθμο log Sum-Product και στη θεωρητική έκφραση της πιθανότητας εμφάνισης κάθε μηχανισμού κατά την πρώτη επανάληψη του αλγορίθμου.
Μελετήθηκε επίσης ο τρόπος με τον οποίο το εισαγόμενο σφάλμα κβαντισμού επιδρά στην απόφαση του αλγορίθμου στο τέλος της κάθε επανάληψης και αναπτύχθηκε ένα θεωρητικό μοντέλο αυτού του μηχανισμού. Το θεωρητικό μοντέλο δίνει την πιθανότητα αλλαγής απόφασης του αλγορίθμου λόγω του σφάλματος κβαντισμού της συνάρτησης Φ(x), χωρίς όμως να είναι ακόμα πλήρες αφού βασίζεται και σε πειραματικά δεδομένα. Η ολοκλήρωση του μοντέλου, ώστε να είναι πλήρως θεωρητικό, θα μπορούσε να αποτελέσει αντικείμενο μελλοντικής έρευνας, καθώς θα επιτρέψει τον προσδιορισμό του περιορισμού της επίδοσης του αλγορίθμου για συγκεκριμένο σχήμα κβαντισμού της συνάρτησης, αποφεύγοντας χρονοβόρες εξομοιώσεις. / Low-Density Parity-Check (LDPC) codes belong to the category of Linear Block Codes. They are error detection and correction codes. Although LDPC codes have been proposed by R. Gallager since 1962, they were scarcely considered in the 35 years that followed. Only in the end-90's they were rediscovered due to their decoding performance that approaches Shannon limit. As their name indicates they are parity check codes whose parity check matrix is sparse. Since the encoding process is simple, the decoding procedure determines the performance and the consumed power of the decoder. For this reason several iterative decoding algorithms have been developed. However theoretical determination of their performance has not yet been feasible.
This work presents the most important iterative decoding algorithms for LDPC codes, that have been developed to date. These algorithms are implemented in matlab and their performance is studied through simulation. The most powerful among them, namely Log Sum-Product, uses a very nonlinear function called Φ(x). Hardware implementation of this function enforces finite accuracy, due to finite word length representation. The roundoff error that this procedure imposes, impacts the decoding performance by means of two mechanisms. Both mechanisms are analyzed and a theoretical expression for each mechanism activation probability, at the end of the first iteration of the algorithm, is developed.
The impact of the roundoff error on the decisions taken by the log Sum-Product decoding algorithm at the end of each iteration is also studied. The mechanism by means of which roundoff alters the decisions of a finite word length implementation of the algorithm compared to the infinite precision case, is analyzed and a corresponding theoretical model is developed. The proposed model computes the probability of changing decisions due to finite word length representation of Φ(x), but it is not yet complete, since the determination of the corresponding parameters is achieved through experimental results. Further research focuses on the completion of the theoretical model, since it can lead to a tool that computes the expected degradation of the decoding performance for a particular implementation of the decoder, without the need of time-consuming simulations.
|
13 |
Iterative joint detection and decoding of LDPC-Coded V-BLAST systemsTsai, Meng-Ying (Brady) 10 July 2008 (has links)
Soft iterative detection and decoding techniques have been shown to be able to achieve near-capacity performance in multiple-antenna systems. To obtain the optimal soft information by marginalization over the entire observation space is intractable; and the current literature is unable to guide us towards the best way to obtain the suboptimal soft information. In this thesis, several existing soft-input soft-output (SISO) detectors, including minimum mean-square error-successive interference cancellation (MMSE-SIC), list sphere decoding (LSD), and Fincke-Pohst maximum-a-posteriori (FPMAP), are examined. Prior research has demonstrated that LSD and FPMAP outperform soft-equalization methods (i.e., MMSE-SIC); however, it is unclear which of the two scheme is superior in terms of performance-complexity trade-off. A comparison is conducted to resolve the matter. In addition, an improved scheme is proposed to modify LSD and FPMAP, providing error performance improvement and a reduction in computational complexity simultaneously. Although list-type detectors such as LSD and FPMAP provide outstanding error performance, issues such as the optimal initial sphere radius, optimal radius update strategy, and their highly variable computational complexity are still unresolved. A new detection scheme is proposed to address the above issues with fixed detection complexity, making the scheme suitable for practical implementation. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2008-07-08 19:29:17.66
|
14 |
Digit-Online LDPC DecodingMarshall, Philip A. Unknown Date
No description available.
|
15 |
Applications of Mathematical Optimization Methods to Digital Communications and Signal ProcessingGiddens, Spencer 29 July 2020 (has links)
Mathematical optimization is applicable to nearly every scientific discipline. This thesis specifically focuses on optimization applications to digital communications and signal processing. Within the digital communications framework, the channel encoder attempts to encode a message from a source (the sender) in such a way that the channel decoder can utilize the encoding to correct errors in the message caused by the transmission over the channel. Low-density parity-check (LDPC) codes are an especially popular code for this purpose. Following the channel encoder in the digital communications framework, the modulator converts the encoded message bits to a physical waveform, which is sent over the channel and converted back to bits at the demodulator. The modulator and demodulator present special challenges for what is known as the two-antenna problem. The main results of this work are two algorithms related to the development of optimization methods for LDPC codes and the two-antenna problem. Current methods for optimization of LDPC codes analyze the degree distribution pair asymptotically as block length approaches infinity. This effectively ignores the discrete nature of the space of valid degree distribution pairs for LDPC codes of finite block length. While large codes are likely to conform reasonably well to the infinite block length analysis, shorter codes have no such guarantee. Chapter 2 more thoroughly introduces LDPC codes, and Chapter 3 presents and analyzes an algorithm for completely enumerating the space of all valid degree distribution pairs for a given block length, code rate, maximum variable node degree, and maximum check node degree. This algorithm is then demonstrated on an example LDPC code of finite block length. Finally, we discuss how the result of this algorithm can be utilized by discrete optimization routines to form novel methods for the optimization of small block length LDPC codes. In order to solve the two-antenna problem, which is introduced in greater detail in Chapter 2, it is necessary to obtain reliable estimates of the timing offset and channel gains caused by the transmission of the signal through the channel. The timing offset estimator can be formulated as an optimization problem, and an optimization method used to solve it was previously developed. However, this optimization method does not utilize gradient information, and as a result is inefficient. Chapter 4 presents and analyzes an improved gradient-based optimization method that solves the two-antenna problem much more efficiently.
|
16 |
Mapeamento de bits para adaptação rápida a variações de canal de sistemas QAM codificados com LDPCCORRÊA, Fernanda Regina Smith Neves 29 September 2017 (has links)
Submitted by Carmen Torres (carmensct@globo.com) on 2018-02-09T18:11:30Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Tese_MapeamentoBitsAdaptacao.pdf: 986310 bytes, checksum: 6e1b30f6ca34fc67df43f3141680c73a (MD5) / Approved for entry into archive by Edisangela Bastos (edisangela@ufpa.br) on 2018-02-16T16:12:49Z (GMT) No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Tese_MapeamentoBitsAdaptacao.pdf: 986310 bytes, checksum: 6e1b30f6ca34fc67df43f3141680c73a (MD5) / Made available in DSpace on 2018-02-16T16:12:49Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Tese_MapeamentoBitsAdaptacao.pdf: 986310 bytes, checksum: 6e1b30f6ca34fc67df43f3141680c73a (MD5)
Previous issue date: 2017-09-29 / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / Os codigos com matriz de vericação de paridade de baixa densidade (LDPC) tem sido adotados como estrategia de correção de erros em diversos padrões de sistemas de comunicação, como nos sistemas G.hn (padrão que unifica as redes domesticas) e IEEE 802.11n (padrão para redes sem o locais). Nestes sistemas com modulação de amplitude em quadratura (QAM) codicados com LDPC, mapear propriamente os bits codificados para os diferentes sub-canais, considerando o fato de os sub-canais terem diferentes qualidades, garante uma melhora no desempenho geral do sistema. Nesse sentido, esta Tese apresenta uma nova técnica de mapeamento de bits, baseada na suposição de que bits transmitidos em sub-canais \bons" ajudam bits transmitidos em sub-canais \ruins". Isto e possível através de algumas restrições impostas ao grafo de Tanner associado, semelhantes aos códigos Root-LDPC. A otimização deste mapeamento de bits utilizando curvas de transferência de informação extrínseca (EXIT charts) também e apresentada. Observa-se que esse mapeamento tem a vantagem de um espaço de busca de otimização reduzido quando aplicado ao sistema com modo de transmissão de portadora única. Além disso, em situações nas quais o espaço de busca não e tão reduzido, como em aplicações baseadas em multiplexação por divisão de frequência ortogonal (OFDM), chegou-se a uma simples regra pratica associada as restrições do mapeamento de bits que praticamente elimina a necessidade de uma otimização. Por fim, um estudo do impacto do nível de desequilíbrio de contabilidade através dos sub-canais sobre o desempenho do mapeamento de bits e apresentado. Os resultados das simulações mostram que a estratégia de mapeamento de bits melhora o desempenho do sistema, e que, na presença de variações do canal, o sistema pode, adaptativamente, aplicar um novo mapeamento de bits sem a necessidade de recorrer a uma otimização complexa, podendo ser muito útil em sistemas práticos. / Low-Density parity-check (LDPC) codes are being adopted as the error correction strategy in di erent system standards, such as the G.hn (home networking standard) and the IEEE 802.11n (wireless local standard). In these LDPC-coded quadrature amplitude modulation (QAM) systems, mapping the LDPC coded bits properly to the di erent sub-channels considering the fact that sub-channels have di erent qualities ensures an improved overall system performance. Accordingly, this thesis presents a new bit mapping technique based on the assumption that bits transmitted in \good" sub-channels, help bits transmitted in \bad" sub-channels. This can be made possible through some restrictions to be imposed on the associated Tanner graph, akin to Root-LDPC codes. An optimization of the root-like bit mapping through extrinsic information transfer (EXIT) charts analysis is also presented. We show that this mapping has the advantage of a reduced optimization search space when applied to single-carrier based systems. Moreover, in situations where the search space is not só reduced, such as in orthogonal frequency division multiplexing (OFDM)-based applications, we arrive at a rule of thumb associated with the bit mapping constraints that practically eliminates the need for an optimization. Finally, a study of the impact of the level of reliability imbalance across the sub-channels on the performance of the root-like bit mapping is presented. Simulation results show that the new bit mapping strategy improves performance, and that in the presence of channel variations, the system can, adaptively, apply a new bit mapping without the need of a complex optimization, which can be very useful in practical systems.
|
17 |
Area and energy efficient VLSI architectures for low-density parity-check decoders using an on-the-fly computationGunnam, Kiran Kumar 15 May 2009 (has links)
The VLSI implementation complexity of a low density parity check (LDPC)
decoder is largely influenced by the interconnect and the storage requirements. This
dissertation presents the decoder architectures for regular and irregular LDPC codes that
provide substantial gains over existing academic and commercial implementations. Several
structured properties of LDPC codes and decoding algorithms are observed and are used to
construct hardware implementation with reduced processing complexity. The proposed
architectures utilize an on-the-fly computation paradigm which permits scheduling of the
computations in a way that the memory requirements and re-computations are reduced.
Using this paradigm, the run-time configurable and multi-rate VLSI architectures for the
rate compatible array LDPC codes and irregular block LDPC codes are designed. Rate
compatible array codes are considered for DSL applications. Irregular block LDPC codes
are proposed for IEEE 802.16e, IEEE 802.11n, and IEEE 802.20. When compared with a
recent implementation of an 802.11n LDPC decoder, the proposed decoder reduces the
logic complexity by 6.45x and memory complexity by 2x for a given data throughput.
When compared to the latest reported multi-rate decoders, this decoder design has an area efficiency of around 5.5x and energy efficiency of 2.6x for a given data throughput. The
numbers are normalized for a 180nm CMOS process.
Properly designed array codes have low error floors and meet the requirements of
magnetic channel and other applications which need several Gbps of data throughput. A
high throughput and fixed code architecture for array LDPC codes has been designed. No
modification to the code is performed as this can result in high error floors. This parallel
decoder architecture has no routing congestion and is scalable for longer block lengths.
When compared to the latest fixed code parallel decoders in the literature, this design has
an area efficiency of around 36x and an energy efficiency of 3x for a given data throughput.
Again, the numbers are normalized for a 180nm CMOS process. In summary, the design
and analysis details of the proposed architectures are described in this dissertation. The
results from the extensive simulation and VHDL verification on FPGA and ASIC design
platforms are also presented.
|
18 |
Coding techniques for information-theoretic strong secrecy on wiretap channelsSubramanian, Arunkumar 29 August 2011 (has links)
Traditional solutions to information security in communication systems act in the application layer and are oblivious to the effects in the physical layer. Physical-layer security methods, of which information-theoretic security is a special case, try to extract security from the random effects in the physical layer. In information-theoretic security, there are two asymptotic notions of secrecy---weak and strong secrecy
This dissertation investigates the problem of information-theoretic strong secrecy on the binary erasure wiretap channel (BEWC) with a specific focus on designing practical codes. The codes designed in this work are based on analysis and techniques from error-correcting codes. In particular, the dual codes of certain low-density parity-check (LDPC) codes are shown to achieve strong secrecy in a coset coding scheme.
First, we analyze the asymptotic block-error rate of short-cycle-free LDPC codes when they are transmitted over a binary erasure channel (BEC) and decoded using the belief propagation (BP) decoder. Under certain conditions, we show that the asymptotic block-error rate falls according to an inverse square law in block length, which is shown to be a sufficient condition for the dual codes to achieve strong secrecy.
Next, we construct large-girth LDPC codes using algorithms from graph theory and show that the asymptotic bit-error rate of these codes follow a sub-exponential decay as the block length increases, which is a sufficient condition for strong secrecy. The secrecy rates achieved by the duals of large-girth LDPC codes are shown to be an improvement over that of the duals of short-cycle-free LDPC codes.
|
19 |
Sparse graph codes on a multi-dimensional WCDMA platformVlok, Jacobus David 04 July 2007 (has links)
Digital technology has made complex signal processing possible in communication systems and greatly improved the performance and quality of most modern telecommunication systems. The telecommunication industry and specifically mobile wireless telephone and computer networks have shown phenomenal growth in both the number of subscribers and emerging services, resulting in rapid consumption of common resources of which the electromagnetic spectrum is the most important. Technological advances and research in digital communication are necessary to satisfy the growing demand, to fuel the demand and to exploit all the possibilities and business opportunities. Efficient management and distribution of resources facilitated by state-of-the-art algorithms are indispensable in modern communication networks. The challenge in communication system design is to construct a system that can accurately reproduce the transmitted source message at the receiver. The channel connecting the transmitter and receiver introduces detrimental effects and limits the reliability and speed of information transfer between the source and destination. Typical channel effects encountered in mobile wireless communication systems include path loss between the transmitter and receiver, noise caused by the environment and electronics in the system, and fading caused by multiple paths and movement in the communication channel. In multiple access systems, different users cause interference in each other’s signals and adversely affect the system performance. To ensure reliable communication, methods to overcome channel effects must be devised and implemented in the system. Techniques used to improve system performance and capacity include temporal, frequency, polarisation and spatial diversity. This dissertation is concerned mainly with temporal or time diversity. Channel coding is a temporal diversity scheme and aims to improve the system error performance by adding structured redundancy to the transmitted message. The receiver exploits the redundancy to infer with greater accuracy which message was transmitted, compared with uncoded systems. Sparse graph codes are channel codes represented as sparse probabilistic graphical models which originated in artificial intelligence theory. These channel codes are described as factor graph structures with bit nodes, representing the transmitted codeword bits, and bit-constrained or check nodes. Each constraint involves only a small number of code bits, resulting in a sparse factor graph with far fewer connections between bit and check nodes than the maximum number of possible connections. Sparse graph codes are iteratively decoded using message passing or belief propagation algorithms. Three classes of iteratively decodable channel codes are considered in this study, including low-density parity-check (LDPC), Turbo and repeat-accumulate (RA) codes. The modulation platform presented in this dissertation is a spectrally efficient wideband system employing orthogonal complex spreading sequences (CSSs) to spread information sequences over a wider frequency band in multiple modulation dimensions. Special features of these spreading sequences include their constant envelopes and power output, providing communication range or device battery life advantages. This study shows that multiple layer modulation (MLM) can be used to transmit parallel data streams with improved spectral efficiency compared with single-layer modulation, providing data throughput rates proportional to the number of modulation layers at performances equivalent to single-layer modulation. Alternatively, multiple modulation layers can be used to transmit coded information to achieve improved error performance at throughput rates equivalent to a single layer system / Dissertation (MEng (Electronic Engineering))--University of Pretoria, 2007. / Electrical, Electronic and Computer Engineering / unrestricted
|
20 |
Implementation and optimization of LDPC decoding algorithms tailored for Nvidia GPUs in 5G / Implementering och optimering av LDPC avkodningsalgoritmer anpassat för Nvidia GPU:er i 5GSalomonsson, Benjamin January 2022 (has links)
Low-Density Parity-Check (LDPC) codes are linear error-correcting codes used to establish reliable communication between units on a noisy transmission channel in mobile telecommunications. LDPC algorithms detect and recover altered or corrupted message bits using sparse parity-check matrices in order to decipher messages correctly. LDPC codes have been shown to be fitting coding schemes for the fifth generation (5G) New Radio (NR), according to the third generation partnership project (3GPP). TietoEvry, a consultant in telecom, has discovered that optimizations of LDPC decoding algorithms can be achieved/obtained with the use of a parallel computing platform called Compute Unified Device Architecture (CUDA), developed by NVIDIA. This platform utilizes the capabilities of a graphics processing unit (GPU) rather than a central processing unit (CPU), which in turn provides parallel computing. An optimized version of an LDPC decoding algorithm, the Min-Sum Algorithm (MSA), is implemented in CUDA and in C++ for comparison in terms of CPU execution time, to explore the capabilities that CUDA offers. The testing is done with a set of 12 sparse parity-check matrices and input-channel messages with different sizes. As a result, the CUDA implementation executes approximately 55% faster than a standard, unoptimized C++ implementation.
|
Page generated in 0.097 seconds