• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rapid crack propagation in polymer multi-layer systems

Ivankovic, Alojz January 1991 (has links)
No description available.
2

The Effects of Ultrasonic Nano-crystal Surface Modification on Residual Stress, Microstructure and Fatigue Behavior of Low-Modulus Ti-35Nb-7Zr-5Ta-0.3O Alloy

Jagtap, Rohit January 2016 (has links)
No description available.
3

Injectable Biomaterials for Spinal Applications

López, Alejandro January 2014 (has links)
The use of injectable biomaterials is growing as the demands for minimally invasive procedures, and more easily applicable implants become higher, but their availability is still limited due to the difficulties associated to their design. Each year, more than 700,000 vertebral compression fractures (VCF’s) are reported in the US and 500,000 VCF’s in Europe due to primary osteoporosis only. VCF’s can compromise the delicacy of the spinal canal and also cause back pain, which affects the patient’s quality of life. Vertebroplasty was developed in the 80’s, and has proven to be a safe minimally invasive procedure that can, quickly and sustainably, relieve the pain in patients experiencing VCF’s. However, biomaterials for vertebroplasty still have limitations. For instance, ceramic bone cements are difficult to distinguish from the bone using X-ray techniques. On the other hand, acrylic bone cements may cause adjacent vertebral fractures (AVF’s). Large clinical studies have indicated that 12 to 20% vertebroplasty recipients developed subsequent vertebral fractures, and that 41 to 67% of these, were AVF’s. This may be attributed to the load shifting and increased pressure on the adjacent endplates reached after vertebroplasty with stiff cements. The primary aim of this thesis was to develop better injectable biomaterials for spinal applications, particularly, bone cements for vertebroplasty. Water-soluble radiopacifiers were first investigated to enhance the radiopacity of resorbable ceramic cements. Additionally, different strategies to produce materials that mechanically comply with the surrounding tissues (low-modulus bone cements) were investigated. When a suitable low-modulus cement was produced, its performance was evaluated in both bovine bone, and human vertebra ex vivo models. In summary, strontium halides showed potential as water-soluble radiocontrast agents and could be used in resorbable calcium phosphates and other types of resorbable biomaterials. Conversely, linoleic acid-modified (low-modulus) cements appeared to be a promising alternative to currently available high-modulus cements. It was also shown that the influence of the cement properties on the strength and stiffness of a single vertebra depend upon the initial bone volume fraction, and that at low bone volume fractions, the initial mechanical properties of the vertebroplasty cement become more relevant. Finally, it was shown that vertebroplasty with low-modulus cements is biomechanically safe, and could become a recommended minimally invasive therapy in selected cases, especially for patients suffering from vertebral compression fractures due to osteoporosis.
4

Nitruration d'un alliage titane-niobium à bas module pour l'implantologie orale / Surface nitriding of a low modulus titanium-niobium alloy for dental implants

Bédouin, Yvan 07 December 2016 (has links)
Ce travail a été réalisé dans le cadre d’une collaboration entre le laboratoire de Chimie-Métallurgie de l’INSA de Rennes et le laboratoire de biomatériaux en site osseux (LBSO) de la Faculté de Chirurgie Dentaire de l’Université de Rennes1. L’alliage de titane de type β Ti-27Nb (% at.) a été nitruré pour des applications en implantologie orale parce qu'il possède un bas module d'élasticité, proche de celui de l’os et qu’il est composé uniquement d'éléments biocompatibles. Dans un premier temps l’alliage Ti-27Nb a été synthétisé grâce à un four à induction magnétique selon la technique de fusion en lévitation en creuset froid sectorisé. Un traitement de surface par nitruration en phase gazeuse a ensuite été effectué pour augmenter sa résistance à la corrosion et à l’usure. L’analyse structurale a été réalisée par DRX et par des observations en microscopies optique et électronique à balayage. L’analyse chimique a été effectuée par spectrométrie à dispersion d’énergie. La topographie et la dureté superficielle ont été caractérisées par AFM et par nano-indentation. Des essais tribologiques ont permis d’évaluer le coefficient de frottement et la résistance à l’usure. Pour la caractérisation mécanique des essais de traction conventionnels et cycliques ont été effectués. La biocompatibilité a été évaluée in vitro par des cultures bidimensionnelles de plusieurs populations cellulaires en contact des implants métalliques : ostéoblastes, fibroblastes et cellules épithéliales. Elle a été déclinée en termes de cytotoxicité, de prolifération cellulaire, d’expression génique et de morphologie cellulaire. Les propriétés de l’alliage Ti-27Nb nitruré sont particulièrement intéressantes pour une implantation durable en site osseux. / This work was performed in collaboration with the Metallurgical Chemistry team of the Institute of Chemical Sciences of Rennes and the Biomaterials Laboratory of the Faculty of Dentistry of Université de Rennes1. The low modulus Ti-27Nb (at. %) alloy with non-toxic elements was nitrided for the first time in this study for dental implant applications. The alloy was firstly synthetized by cold crucible levitation melting technique. A high temperature gas nitriding treatment was then carried out in order to improve the wear and corrosion resistance. The structural analysis was performed by X-ray diffraction and the microstructure was observed by optical microscopy and by scanning electron microscopy. The chemical analysis was performed by Energy Dispersion Spectrometry. Superficial mechanical properties were then studied by nano-indentation and ball-on-disc tribological tests. Conventional and tensile tests were realized. The biocompatibility was evaluated by in vitro tests performed on human osteoblasts, fibroblastic cells and epithelial cells. Cell proliferation and differentiation were studied as well as cell morphology. All of the observed properties make the nitrided Ti-27Nb alloy particularly suitable for enhanced longevity of dental implants.
5

Advanced Manufacturing of Titanium Alloys for Biomedical Applications

Mavros, Nicholas C. 12 June 2018 (has links)
No description available.

Page generated in 0.0522 seconds