• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Shortening time-series power flow simulations for cost-benefit analysis of LV network operation with PV feed-in

López, Claudio David January 2015 (has links)
Time-series power flow simulations are consecutive power flow calculations on each time step of a set of load and generation profiles that represent the time horizon under which a network needs to be analyzed. These simulations are one of the fundamental tools to carry out cost-benefit analyses of grid planing and operation strategies in the presence of distributed energy resources, unfortunately, their execution time is quite substantial. In the specific case of cost-benefit analyses the execution time of time-series power flow simulations can easily become excessive, as typical time horizons are in the order of a year and different scenarios need to be compared, which results in time-series simulations that require a rather large number of individual power flow calculations. It is often the case that only a set of aggregated simulation outputs is required for assessing grid operation costs, examples of which are total network losses, power exchange through MV/LV substation transformers, and total power provision from PV generators. Exploring alternatives to running time-series power flow simulations with complete input data that can produce approximations of the required results with a level of accuracy that is suitable for cost-benefit analyses but that require less time to compute can thus be beneficial. This thesis explores and compares different methods for shortening time-series power flow simulations based on reducing the amount of input data and thus the required number of individual power flow calculations, and focuses its attention on two of them: one consists in reducing the time resolution of the input profiles through downsampling while the other consists in finding similar time steps in the input profiles through vector quantization and simulating them only once. The results show that considerable execution time reductions and sufficiently accurate results can be obtained with both methods, but vector quantization requires much less data to produce the same level of accuracy as downsampling. Vector quantization delivers a far superior trade-off between data reduction, time savings, and accuracy when the simulations consider voltage control or when more than one simulation with the same input data is required, as in such cases the data reduction process can be carried out only once. One disadvantage of this method is that it does not reproduce peak values in the result profiles with accuracy, which is due to the way downsampling disregards certain time steps in the input profiles and to the averaging effect vector quantization has on the them. This disadvantage makes the simulations shortened through these methods less precise, for example, for detecting voltage violations.
2

Analyse der Auswirkung von unsymmetrisch betriebenen Kundenanlagen auf die Strom- und Spannungsunsymmetrie in öffentlichen Niederspannungsnetzen am Beispiel von Elektrofahrzeugen und Photovoltaikanlagen

Möller, Friedemann 20 April 2023 (has links)
Die Zunahme unsymmetrisch betriebener Kundenanlagen mit hoher Betriebsdauer und -strömen in Niederspannungsnetzen führt neben der stärkeren Belastung der Betriebsmittel und des Spannungsbandes zu einer Erhöhung der Spannungsunsymmetrie. Diese Arbeit untersucht diese Beeinflussungen anhand von Wiederspannungsnetzsimulationen bei verschiedener Durchdringung von Elektrofahrzeugen und Photovoltaikanalgen. Dazu werden anhand von Labor- und Netzmessungen probabilistische Lastmodelle für Haushalte, Photovoltaikanalgen und Elektrofahrzeuge entwickelt, welche die unsymmetrische Betriebsweise über einen Tag berücksichtigen. Die Auswirkungen auf die Spannungsunsymmetrie werden anhand des Verhältnisses zwischen Gegen- zu Mitsystemspannung und die Stromunsymmetrie anhand von unsymmetrischen Leistungsanteilen beschrieben. Neben der Analyse der Auswirkungen der unsymmetrisch betriebenen Kundenanlagen auf die erwähnten Kenngrößen werden mögliche Maßnahmen zur Reduzierung des Einflusses vorgestellt und durch Simulationen geprüft. Anhand der durchgeführten Betrachtungen und Simulationen wird ein Niederspannungsäquivalent abgeleitet. Mit diesem können Profile für die unsymmetrischen Leistungsanteile bestimmt werden, mit denen die Sternpunktbelastung und der Einfluss auf die Unsymmetrie im übergeordneten Netz abgeschätzt werden kann.:1 Einführung 1 1.1 Stand der Technik 1 1.2 Ziel der Arbeit 2 1.3 Struktur der Arbeit 3 2 Grundlagen 4 2.1 Elektroenergiequalität und EMV Koordinierung 4 2.2 Allgemeine Bewertungsgrößen 8 2.2.1 Gleichphasigkeitsindizes 8 2.2.2 Qualitätsreserve 9 2.2.3 Quantil 9 2.3 Betriebsmittelbelastung 10 2.4 Verlustleistung und -energie 10 2.5 Langsame Spannungsänderung 10 2.6 Unsymmetrie-Kenngrößen 13 2.6.1 Spannungsunsymmetrie 16 2.6.2 Stromunsymmetrie 18 2.6.3 Unsymmetrische Leistung 20 3 Einflussfaktoren auf die Unsymmetrie 24 3.1 Übergeordnetes Netz 24 3.2 Transformator 25 3.3 Leitung 27 3.4 Erdung 28 3.5 Kundenanlagen 33 3.5.1 Anschluss der Kundenanlagen 33 3.5.2 Statisches Verhalten hinsichtlich Spannungs- und Frequenzabhängigkeit 34 3.5.3 Analytisches Modell zur vereinfachten Abschätzung der Spannungsunsymmetrie 35 3.6 Zusammenfassende Bewertung der Einflussfaktoren 40 3.7 Maßnahmen zur Reduzierung der Unsymmetrie 41 3.7.1 Verringerung der Gegensystemspannung des übergeordneten Netzes 43 3.7.2 Verringerung der wirksamen Gegen- bzw. Nullsystemimpedanz am Verknüpfungspunkt 43 3.7.3 Verringerung des Gegen- bzw. Nullsystemstroms der anzuschließenden Kundenanlage 43 3.7.4 Erhöhung der unsymmetrischen Lastimpedanz parallel betriebener Anlagen 44 3.7.5 Beeinflussung des Phasenwinkels des Gegen- bzw. Nullsystemstroms 44 3.8 Auswahl des Messorts zur Bestimmung der höchsten Spannungsunsymmetrie 47 4 Simulationskonzept und -modelle 49 4.1 Auswahl an Kundenanlagen 49 4.1.1 Erzeugungsanlagen im Niederspannungsnetz 49 4.1.2 Elektrofahrzeuge 51 4.2 Simulationsablauf 52 4.2.1 Wahl eines Simulationsszenarios und eines Simulationsnetzes 53 4.2.2 Installation von Photovoltaikanlagen und Ladepunkten für Elektrofahrzeuge 54 4.2.3 Festlegung von zu simulierender Zeitdauer und Mittelungsintervall 54 4.2.4 Lastflussberechnung je Zeitschritt 55 4.3 Stochastische Beschreibung der gleichzeitig ladenden Elektrofahrzeuge je Außenleiter – zentrales Laden 55 4.4 Simulationsmodelle - dezentrales Laden 57 4.4.1 Übergeordnetes Netz 57 4.4.2 Betriebsmittel des Niederspannungsnetzes 60 4.4.3 Kundenanlagen 62 5 Simulationsergebnisse 72 5.1 Zentrales Laden 72 5.1.1 Methodik 72 5.1.2 Auslastung der Betriebsmittel 73 5.1.3 Leitungsverluste 73 5.1.4 Unsymmetrischer Leistungsanteil 74 5.1.5 Spannungsunsymmetrie und Spannungsdifferenz 75 5.2 Dezentrales Laden 77 5.2.1 Methodik 77 5.2.2 Auslastung der Betriebsmittel 78 5.2.3 Leitungsverluste 79 5.2.4 Spannungsdifferenz 80 5.2.5 Unsymmetrischer Leistungsanteil 82 5.2.6 Spannungsunsymmetrie 83 5.2.7 Bewertung möglicher Maßnahmen zur Reduzierung der Spannungsunsymmetrie 89 5.2.8 Einfluss unsymmetrischer Koppelimpedanzen auf die Spannungsunsymmetrie 92 5.3 Resümee und Handlungsempfehlungen 94 6 Niederspannungsäquivalent für unsymmetrische Leistungsanteile 97 6.1 Lastgang der unsymmetrischen Leistungsanteile 97 6.2 Geräteklassenabhängiger unsymmetrischer Leistungsanteil 99 6.2.1 Unsymmetrischer Leistungsanteil Haushaltslasten 99 6.2.2 Unsymmetrischer Leistungsanteil Elektrofahrzeuge 99 6.2.3 Unsymmetrische Leistungsanteile PV-Anlagen 103 6.3 Überlagerung der Zeitverläufe 104 6.4 Beispiel 105 7 Zusammenfassung, Schlussfolgerungen und Ausblick 107 Literaturverzeichnis 110 Anhang 118
3

Μεταφορά εξομοιωμένου συστήματος ελέγχου σε μικροεπεξεργαστή για τροφοδότηση φορτίου από κύτταρο καυσίμου (fuel cell)

Βαβάτσικος, Παναγιώτης 07 June 2013 (has links)
Η διπλωματική εργασία που ακολουθεί περιγράφει την διαδικασία που εφαρμόσθηκε ώστε να κατασταθεί δυνατή η τροφοδοσία ενός RL φορτίου με τάση σταθερή σε μέτρο και σε συχνότητα, από μια συστοιχία κυττάρων καυσίμου. Η πειραματική διάταξη, που κατασκευάσθηκε ώστε να πραγματοποιηθεί αυτός ο στόχος, εκτός από την πηγή (κύτταρο καυσίμου) και το φορτίο αποτελείται και από έναν ΣΡ/ΣΡ (dc/dc) μετατροπέα ανύψωσης τάσης, έναν αντιστροφέα πηγής τάσης, έναν τριφασικό μετασχηματιστή, ένα φίλτρο LC, μια συσκευή επιλογής φορτίου και τέλος την ψηφιακή κάρτα με την οποία εκτελούνται οι απαραίτητοι έλεγχοι. Όταν αναφερόμαστε σε τεχνικές ελέγχου εννοούμε αρχικά τόσο την παραγωγή παλμών με την τεχνική της ημιτονοειδούς διαμόρφωσης εύρους παλμών (Sinusoidal Pulse Width Modulation-SPWM) για την τροφοδότηση του αντιστροφέα πηγής τάσης όσο και παλμών με την τεχνική της διαμόρφωσης εύρους παλμών (Pulse Width Modulation – PWM) για τον έλεγχο του ΣΡ/ΣΡ (dc/dc) μετατροπέα ανύψωσης τάσης. Οι παλμοί αυτοί παράγονται μέσω προγράμματος που αναπτύχθηκε στην πλατφόρμα του Labview. Σε δεύτερο επίπεδο εφαρμόζεται με την βοήθεια της ψηφιακής κάρτας και του μοντέλου ο ασαφής έλεγχος που έχει ως σκοπό την σταθεροποίηση της τάσης στο φορτίο. Για να διαπιστώσουμε ότι έχουμε εξασφαλίσει απρόσκοπτη τροφοδοσία του τριφασικού φορτίου από την ενέργεια του κυττάρου καυσίμου με μια τάση με μειωμένο αρμονικό περιεχόμενο και σταθερό πλάτος και συχνότητα, πραγματοποιήσαμε βηματική αλλαγή της τιμής του φορτίου και αλλαγή της τάσης εξόδου του κυττάρου καυσίμου ώστε να διαπιστώσουμε αν όντως ο ασαφής έλεγχος αναλαμβάνει να επαναφέρει τις επιθυμητές τιμές της τάσης στο φορτίο. Η διπλωματική εργασία διαρθρώνεται με τον εξής τρόπο: Στο κεφάλαιο 1 επιχειρούμε μια σύντομη περιγραφή των ανανεώσιμων πηγών ενέργειας που κυριαρχούν στον Ελλαδικό χώρο (ηλιακή, αιολική, υδροηλεκτρική, γεωθερμική και ενέργεια από βιομάζα) ενώ αναφερόμαστε εκτενώς στην τεχνολογία των κυττάρων καυσίμου. Στο κεφάλαιο 2 γίνεται εκτενής περιγραφή των συσκευών που αποτελούν το κύκλωμα ισχύος της πειραματικής διάταξης. Το κύκλωμα ισχύος αποτελείται αρχικά από το κύτταρο καυσίμου που αποτελεί την πηγή ενέργειας, τον ΣΡ/ΣΡ (dc/dc) μετατροπέα ανύψωσης τάσης και τον αντιστροφέα πηγής τάσης. Σε δεύτερο επίπεδο υπάρχει το LC φίλτρο προς περιορισμό των αρμονικών και ο τριφασικός μετασχηματιστής που ανυψώνει το επίπεδο τάσης στο επιθυμητό επίπεδο. Τέλος, υπάρχει ο τριφασικός ζυγός στον οποίο συνδέεται το φορτίο που αποτελεί και την τερματική συσκευή της πειραματικής διάταξης. Στο κεφάλαιο 3 γίνεται μια σύγκριση των διαθέσιμων ψηφιακών μεθόδων για την υλοποίηση των απαραίτητων ελέγχων ενώ έπειτα παρουσιάζονται θεωρητικά αυτοί οι έλεγχοι. Οι διαθέσιμες ψηφιακές μέθοδοι για την πραγματοποίηση των ελέγχων είναι ο μικροεπεξεργαστής ψηφιακού σήματος (Digital Signal Processor-DSP) και οι ψηφιακές κάρτες της εταιρίας Νational Ιnstruments οι οποίες και τελικά επιλέχθηκαν. Οι απαιτούμενοι έλεγχοι που πρέπει να εφαρμοσθούν στην πειραματική μας διάταξη είναι όπως ήδη αναφέραμε η παραγωγή παλμών με τις τεχνικές της ημιτονοειδούς διαμόρφωσης εύρους παλμών (SPWM) και διαμόρφωσης εύρους παλμών (PWM) όπως και ο ασαφής έλεγχος. Στο κεφάλαιο 4 παρουσιάζονται αναλυτικά όλες οι συσκευές της πειραματικής μας διάταξης με ιδιαίτερη αναφορά σε όσες κατασκευάστηκαν στο εργαστήριο (όπως ο ΣΡ/ΣΡ (dc/dc) μετατροπέας ανύψωσης τάσης ) ενώ γίνεται και επεξήγηση διάφορων πρακτικών προβλημάτων που ανέκυψαν κατά την χρησιμοποίηση τους (για παράδειγμα με τον τριφασικό μετασχηματιστή). Στο κεφάλαιο 5 παρουσιάζεται η διαδικασία ανάπτυξης στην πλατφόρμα του Labview του προγράμματος που υλοποιεί τους απαιτούμενους ελέγχους. Πραγματοποιείται λοιπόν μια αναλυτική παρουσίαση όλων των εργαλείων και των ρυθμίσεων τους που μας επέτρεψαν να φθάσουμε στο επιθυμητό αποτέλεσμα. Τέλος, στο κεφάλαιο 6 παρουσιάζονται τα πειραματικά αποτελέσματα και παραθέτουμε τα συμπεράσματα που προέκυψαν. Πιο αναλυτικά υπάρχει παράθεση γραφημάτων και μετρήσεων για το σύνολο της πειραματικής διάταξης ενώ δίνεται ιδιαίτερη προσοχή στην ανάδειξη της λειτουργίας του ελέγχου και του τρόπου που επιδρά στην διάταξη μας. Τέλος, γίνεται μια καταγραφή πιθανών επεκτάσεων αυτής της διπλωματικής εργασίας. / The thesis that follows, describes the procedure which we followed in order to be able to supply a RL load with the power produced by a fuel cell. The load’s voltage should have constant value and frequency. The experimental configuration which was constructed to help us fulfill our goal further from the fuel cell and the RL load, includes a dc dc boost converter, a voltage source inverter, a 3phase transformer, a LC filter, a device that electronically chooses the value of the load and finally the digital card which executes all the necessary controls. When we talk about controls, we refer firstly to the production of SPWM pulses which are used in order to control the voltage source inverter and to the production of PWM pulses which are needed by the dc dc boost converter. These pulses are produced with the aid of a model developed with Labview. In addition, with the use of our digital card and the model which we developed, we are capable of applying the fuzzy logic to our experimental configuration in order to stabilize the load’s voltage. To be certain that we have ensured the smooth supply of the RL load with the power produced by the fuel cell and a voltage signal of constant value and frequency and low harmonic content, we made step changes to the load’s value and alterations to the fuel cell’s output, in order to assure that the fuzzy logic takes charge of the duty to restore the desired voltage signal to the load. The thesis is organized in the following way: In chapter 1 we make a brief description of the renewable energy sources which dominate Greece (solar, wind, hydroelectric, geothermal and biomass energy) and we present extensively the applications of fuel cells. In chapter 2 we describe on a great scale all the devices which consist the power circuit of the experimental configuration . So, the power circuit consists of the fuel cell, which is our energy source, the dc dc boost converter and the voltage source inverter. Furthermore, we have a LC filter in order to limit the total harmonic distortion and a 3 phase transformer which increase the voltage to the desired level. Finally, we have a 3 phase load which is the terminal device of the experimental configuration. In chapter 3 we compare the available digital methods for performing the desired controls and afterwards we present them theoretically. The available digital methods, in order to accomplish the controls, are the Digital Signal Processor (DSP) and the digital cards constructed by National Instruments (is our final choice). The required controls that must be performed include, as we have already mentioned, the SPWM and PWM pulses and of course the fuzzy control. In chapter 4 we present extensively all the devices of our experimental configuration with a special reference to all the devices which were constructed in our lab (like the dc dc boost converter). We make also special reference to some practical problems that we encountered when we used the previous devices (par example with the 3 phase transformer). In chapter 5 we present the procedure in order to develop the Labview model which contains all the necessary controls. Thus, we make a detailed presentation of all the tools and the settings which allowed to us to fulfill our goal. In chapter 6 we present all the experimental results and the conclusions we drew. More specifically, we present graphs and measurements for every part of the experimental configuration and we give special attention in order to give prominence to the fuzzy controller’s impact. Finally, some possible extensions of this thesis are underlined.

Page generated in 0.0706 seconds