• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 18
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 80
  • 80
  • 80
  • 80
  • 50
  • 48
  • 28
  • 27
  • 19
  • 18
  • 17
  • 15
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Code generation and simulation of an automatic, flexible QC-LDPC hardware decoder

Von Leipzig, Mirko 03 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Iterative error correcting codes such as LDPC codes have become prominent in modern forward error correction systems. A particular subclass of LDPC codes known as quasicyclic LDPC codes has been incorporated in numerous high speed wireless communication and video broadcasting standards. These standards feature multiple codes with varying codeword lengths and code rates and require a high throughput. Flexible hardware that is capable of decoding multiple quasi-cyclic LDPC codes is therefore desirable. This thesis investigates binary quasi-cyclic LDPC codes and designs a generic, flexible VHDL decoder. The decoder is further enhanced to automatically select the most likely decoder based on the initial a posterior probability of the parity-check equation syndromes. A software system is developed that generates hardware code for such a decoder based on a small user specification. The system is extended to provide performance simulations for this generated decoder. / AFRIKAANSE OPSOMMING: Iteratiewe foutkorreksiekodes soos LDPC-kodes word wyd gebruik in moderne voorwaartse foutkorreksiestelsels. ’n Subklas van LDPC-kodes, bekend as kwasisikliese LDPC-kodes, word in verskeie hoëspoed-kommunikasie- en video-uitsaaistelselstandaarde gebruik. Hierdie standaarde inkorporeer verskeie kodes van wisselende lengtes en kodetempos, en vereis hoë deurset. Buigsame apparatuur, wat die vermoë het om ’n verskeidenheid kwasisikliese LDPC-kodes te dekodeer, is gevolglik van belang. Hierdie tesis ondersoek binêre kwasisikliese LDPC-kodes, en ontwerp ’n generiese, buigsame VHDL-dekodeerder. Die dekodeerder word verder verbeter om outomaties die mees waarskynlike dekodeerder te selekteer, gebaseer op die aanvanklike a posteriori-waarskynlikheid van die pariteitstoetsvergelykings se sindrome. ’n Programmatuurstelsel word ontwikkel wat die fermware-kode vir so ’n dekodeerder genereer, gebaseer op ’n beknopte gebruikerspesifikasie. Die stelsel word uitgebrei om werksverrigting te simuleer vir die gegenereerde dekodeerder.
32

Optimizing LDPC codes for a mobile WiMAX system with a saturated transmission amplifier

Salmon, Brian Paxton 26 January 2009 (has links)
In mobile communication, the user’s information is transmitted through a wireless communication link that is subjected to a range of deteriorating effects. The quality of the transmission can be presented by the rate of transfer and the reliability of the received stream. The capacity of the communication link can be reached through the use of channel coding. Channel coding is the method of adding redundant information to the user’s information to mitigate the deteriorating effects of the communication link. Mobile WiMAX is a technology that makes use of orthogonal frequency division multiplexing (OFDM) modulation to transmit information over a wireless communication channel. The OFDM physical layer has a high peak average to power ratio (PAPR) characteristic that saturates the transmitter’s amplifier quite easily when proper backoff is not made in the transmission power. In this dissertation an optimized graph code was used as an alternative solution to improve the system’s performance in the presence of a saturated transmission’s amplifier. The graph code was derived from a degree distribution given by the density evolution algorithm and provided no extra network overhead to implement. The performance analysis resulted in a factor of 10 improvement in the error floor and a coding gain of 1.5 dB. This was all accomplished with impairments provided by the mobile WiMAX standard in the construction of the graph code. / Dissertation (MEng)--University of Pretoria, 2009. / Electrical, Electronic and Computer Engineering / unrestricted
33

ROTARY-WING FLIGHT TESTS TO DETERMINE THE BENEFITS OF FREQUENCY AND SPATIAL DIVERSITY AT THE YUMA PROVING GROUND

Diehl, Michael, Swain, Jason, Wilcox, Tab 11 1900 (has links)
The United States (U.S.) Army Yuma Proving Ground (YPG) conducted a series of rotary-wing flight tests for the sole purpose of checking out Telemetry data link instrumentation. Four flights were conducted at YPG in February 2016 that built upon an earlier test flight conducted in June 2015. The most recent iteration of testing examined the benefits of frequency diversity on aircraft and the spatial diversity of receiving sites using existing hardware at YPG. Quantitative analysis from those flight results will be presented and include discussion on how results will affect future mission operations at YPG.
34

Simulation Study Of A Gpram System: Error Control Coding And Connectionism

Schultz, Steven E 01 January 2012 (has links)
A new computing platform, the General Purpose Reprsentation and Association Machine is studied and simulated. GPRAM machines use vague measurements to do a quick and rough assessment on a task; then use approximated message-passing algorithms to improve assessment; and finally selects ways closer to a solution, eventually solving it. We illustrate concepts and structures using simple examples.
35

An Area-Efficient Architecture for the Implementation of LDPC Decoder

Yang, Lan 25 April 2011 (has links)
No description available.
36

FPGA-Based LDPC Coded Modulations for Optical Transport Networks

Zou, Ding, Zou, Ding January 2017 (has links)
Current coherent optical transmission systems focus on single carrier solutions for 400Gb/s serial transmission to support traffic growth in fiber-optics communications, together with a few subcarriers multiplexed solutions for the 1 Tb/s serial data rates and beyond. With the advancement of analog-to-digital converter technologies, high order modulation formats up to 64-QAM with symbol rate up to 72Gbaud have been demonstrated experimentally with Raman amplification. To enable such high serial data rates, it is highly desirable to implement in hardware low complexity digital signal processing schemes and advanced forward error correction coding with powerful error correction capability. In this dissertation, to enable high-speed optical communications, we first proposed an efficient FPGA architecture of high-performance binary and non-binary LDPC engines that can support throughputs of multiple Gb/s, which have low power consumption, providing high net coding gains at a target bit-error rate of 10-15. Further, we implement a generalized LDPC coding based rate adaptive binary LDPC coding scheme and puncturing based rate adaptive non-binary LDPC coding scheme, where large number of parameters can be reconfigured in order to cope with the time-varying optical channel conditions and service requirements. Based on comprehensive analysis on complexity, latency, and power consumption we demonstrate that the proposed efficient implementation represents a feasible solution for the next generation optical communication networks. Additionally, we investigate the FPGA implementation of rate adaptive regular LDPC coding combined with up to six high-order modulation formats and demonstrate high net coding gain performance and demonstrated a bit loading algorithm for irregular LDPC coding. Lastly, we present the real-time implementation of a direct detection OFDM transceiver with multi Giga symbols/s symbol rates in a back-to-back configuration.
37

Conception du décodeur NB-LDPC à débit ultra-élevé / Design of ultra high throughput rate NB-LDPC decoder

Harb, Hassan 08 November 2018 (has links)
Les codes correcteurs d’erreurs Non-Binaires Low Density Parity Check (NB-LDPC) sont connus pour avoir de meilleure performance que les codes LDPC binaires. Toutefois, la complexité de décodage des codes non-binaires est bien supérieure à celle des codes binaires. L’objectif de cette thèse est de proposer de nouveaux algorithmes et de nouvelles architectures matérielles de code NB-LDPC pour le décodage des NBLDPC. La première contribution de cette thèse consiste à réduire la complexité du nœud de parité en triant en amont ses messages d’entrées. Ce tri initial permet de rendre certains états très improbables et le matériel requis pour les traiter peut tout simplement être supprimé. Cette suppression se traduit directement par une réduction de la complexité du décodeur NB-LDPC, et ce, sans affecter significativement les performances de décodage. Un modèle d’architecture, appelée "architecture hybride" qui combine deux algorithmes de l’état de l’art ("l’Extended Min Sum" et le "Syndrome Based") a été proposé afin d’exploiter au maximum le pré-tri. La thèse propose aussi de nouvelles méthodes pour traiter les nœuds de variable dans le contexte d’une architecture pré-tri. Différents exemples d’implémentations sont donnés pour des codes NB-LDPC sur GF(64) et GF(256). En particulier, une architecture très efficace de décodeur pour un code de rendement 5/6 sur GF(64) est présentée. Cette architecture se caractérise par une architecture de check node nœud de parité entièrement parallèle. Enfin, une problématique récurrente dans les architectures NB-LDPC, qui est la recherche des P minimums parmi une liste de taille Ns, est abordée. La thèse propose une architecture originale appelée first-then-second minimum pour une implantation efficace de cette tâche. / The Non-Binary Low Density Parity Check (NB-LDPC) codes constitutes an interesting category of error correction codes, and are well known to outperform their binary counterparts. However, their non-binary nature makes their decoding process of higher complexity. This PhD thesis aims at proposing new decoding algorithms for NB-LDPC codes that will be shaping the resultant hardware architectures expected to be of low complexity and high throughput rate. The first contribution of this thesis is to reduce the complexity of the Check Node (CN) by minimizing the number of messages being processed. This is done thanks to a pre-sorting process that sorts the messages intending to enter the CN based on their reliability values, where the less likely messages will be omitted and consequently their dedicated hardware part will be simply removed. This reliability-based sorting enabling the processing of only the highly reliable messages induces a high reduction of the hardware complexity of the NB-LDPC decoder. Clearly, this hardware reduction must come at no significant performance degradation. A new Hybrid architectural CN model (H-CN) combining two state-of-the-art algorithms - Forward-Backward CN (FB-CN) and Syndrome Based CN (SB-CN) - has been proposed. This hybrid model permits to effectively exploit the advantages of pre-sorting. This thesis proposes also new methods to perform the Variable Node (VN) processing in the context of pre-sorting-based architecture. Different examples of implementation of NB-LDPC codes defined over GF(64) and GF(256) are presented. For decoder to run faster, it must become parallel. From this perspective, we have proposed a new efficient parallel decoder architecture for a 5/6 rate NB-LDPC code defined over GF(64). This architecture is characterized by its fully parallel CN architecture receiving all the input messages in only one clock cycle. The proposed new methodology of parallel implementation of NB-LDPC decoders constitutes a new vein in the hardware conception of ultra-high throughput rate decoders. Finally, since the NB-LDPC decoders requires the implementation of a sorting function to extract P minimum values among a list of size Ns, a chapter is dedicated to this problematic where an original architecture called First-Then-Second-Extrema-Selection (FTSES) has been proposed.
38

Efficient Decoding Algorithms for Low-Density Parity-Check Codes / Effektiva avkodningsalgoritmer för low density parity check-koder

Blad, Anton January 2005 (has links)
<p>Low-density parity-check codes have recently received much attention because of their excellent performance and the availability of a simple iterative decoder. The decoder, however, requires large amounts of memory, which causes problems with memory consumption. </p><p>We investigate a new decoding scheme for low density parity check codes to address this problem. The basic idea is to define a reliability measure and a threshold, and stop updating the messages for a bit whenever its reliability is higher than the threshold. We also consider some modifications to this scheme, including a dynamic threshold more suitable for codes with cycles, and a scheme with soft thresholds which allow the possibility of removing a decision which have proved wrong. </p><p>By exploiting the bits different rates of convergence we are able to achieve an efficiency of up to 50% at a bit error rate of less than 10^-5. The efficiency should roughly correspond to the power consumption of a hardware implementation of the algorithm.</p>
39

Joint Equalization and Decoding via Convex Optimization

Kim, Byung Hak 2012 May 1900 (has links)
The unifying theme of this dissertation is the development of new solutions for decoding and inference problems based on convex optimization methods. Th first part considers the joint detection and decoding problem for low-density parity-check (LDPC) codes on finite-state channels (FSCs). Hard-disk drives (or magnetic recording systems), where the required error rate (after decoding) is too low to be verifiable by simulation, are most important applications of this research. Recently, LDPC codes have attracted a lot of attention in the magnetic storage industry and some hard-disk drives have started using iterative decoding. Despite progress in the area of reduced-complexity detection and decoding algorithms, there has been some resistance to the deployment of turbo-equalization (TE) structures (with iterative detectors/decoders) in magnetic-recording systems because of error floors and the difficulty of accurately predicting performance at very low error rates. To address this problem for channels with memory, such as FSCs, we propose a new decoding algorithms based on a well-defined convex optimization problem. In particular, it is based on the linear-programing (LP) formulation of the joint decoding problem for LDPC codes over FSCs. It exhibits two favorable properties: provable convergence and predictable error-floors (via pseudo-codeword analysis). Since general-purpose LP solvers are too complex to make the joint LP decoder feasible for practical purposes, we develop an efficient iterative solver for the joint LP decoder by taking advantage of its dual-domain structure. The main advantage of this approach is that it combines the predictability and superior performance of joint LP decoding with the computational complexity of TE. The second part of this dissertation considers the matrix completion problem for the recovery of a data matrix from incomplete, or even corrupted entries of an unknown matrix. Recommender systems are good representatives of this problem, and this research is important for the design of information retrieval systems which require very high scalability. We show that our IMP algorithm reduces the well-known cold-start problem associated with collaborative filtering systems in practice.
40

Parallel VLSI Architectures for Multi-Gbps MIMO Communication Systems

January 2011 (has links)
In wireless communications, the use of multiple antennas at both the transmitter and the receiver is a key technology to enable high data rate transmission without additional bandwidth or transmit power. Multiple-input multiple-output (MIMO) schemes are widely used in many wireless standards, allowing higher throughput using spatial multiplexing techniques. MIMO soft detection poses significant challenges to the MIMO receiver design as the detection complexity increases exponentially with the number of antennas. As the next generation wireless system is pushing for multi-Gbps data rate, there is a great need for high-throughput low-complexity soft-output MIMO detector. The brute-force implementation of the optimal MIMO detection algorithm would consume enormous power and is not feasible for the current technology. We propose a reduced-complexity soft-output MIMO detector architecture based on a trellis-search method. We convert the MIMO detection problem into a shortest path problem. We introduce a path reduction and a path extension algorithm to reduce the search complexity while still maintaining sufficient soft information values for the detection. We avoid the missing counter-hypothesis problem by keeping multiple paths during the trellis search process. The proposed trellis-search algorithm is a data-parallel algorithm and is very suitable for high speed VLSI implementation. Compared with the conventional tree-search based detectors, the proposed trellis-based detector has a significant improvement in terms of detection throughput and area efficiency. The proposed MIMO detector has great potential to be applied for the next generation Gbps wireless systems by achieving very high throughput and good error performance. The soft information generated by the MIMO detector will be processed by a channel decoder, e.g. a low-density parity-check (LDPC) decoder or a Turbo decoder, to recover the original information bits. Channel decoder is another very computational-intensive block in a MIMO receiver SoC (system-on-chip). We will present high-performance LDPC decoder architectures and Turbo decoder architectures to achieve 1+ Gbps data rate. Further, a configurable decoder architecture that can be dynamically reconfigured to support both LDPC codes and Turbo codes is developed to support multiple 3G/4G wireless standards. We will present ASIC and FPGA implementation results of various MIMO detectors, LDPC decoders, and Turbo decoders. We will discuss in details the computational complexity and the throughput performance of these detectors and decoders.

Page generated in 0.0695 seconds