• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A physics-based statistical random telegraph noise model / Um modelo estatistico e fisicamente baseado para o minimo RTN

Silva, Maurício Banaszeski da January 2016 (has links)
O Ruído de Baixa Frequência (LFN), tais como o ruído flicker e o Random Telegraph Noise (RTN), são limitadores de performance em muitos circuitos analógicos e digitais. Para transistores diminutos, a densidade espectral de potência do ruído pode variar muitas ordens de grandeza, impondo uma séria limitação na performance do circuito e também em sua confiabilidade. Nesta tese, nós propomos um novo modelo de RTN estatístico para descrever o ruído de baixa frequência em MOSFETs. Utilizando o modelo proposto, pode-se explicar e calcular o valor esperado e a variabilidade do ruído em função das polarizações, geometrias e dos parâmetros físicos do transistor. O modelo é validado através de inúmeros resultados experimentais para dispositivos com canais tipo n e p, e para diferentes tecnologias CMOS. É demonstrado que a estatística do ruído LFN dos dispositivos de canal tipo n e p podem ser descritos através do mesmo mecanismo. Através dos nossos resultados e do nosso modelo, nós mostramos que a densidade de armadilhas dos transistores de canal tipo p é fortemente dependente do nível de Fermi, enquanto para o transistor de tipo n a densidade de armadilhas pode ser considerada constante na energia. Também é mostrado e explicado, através do nosso modelo, o impacto do implante de halo nas estatísticas do ruído. Utilizando o modelo demonstra-se porque a variabilidade, denotado por σ[log(SId)], do RTN/LFN não segue uma dependência 1/√área; e fica demonstrado que o ruído, e sua variabilidade, encontrado em nossas medidas pode ser modelado utilizando parâmetros físicos. Além disso, o modelo proposto pode ser utilizado para calcular o percentil do ruído, o qual pode ser utilizado para prever ou alcançar certo rendimento do circuito. / Low Frequency Noise (LFN) and Random Telegraph Noise (RTN) are performance limiters in many analog and digital circuits. For small area devices, the noise power spectral density can easily vary by many orders of magnitude, imposing serious threat on circuit performance and possibly reliability. In this thesis, we propose a new RTN model to describe the statistics of the low frequency noise in MOSFETs. Using the proposed model, we can explain and calculate the Expected value and Variability of the noise as function of devices’ biases, geometry and physical parameters. The model is validated through numerous experimental results for n-channel and p-channel devices from different CMOS technology nodes. We show that the LFN statistics of n-channel and p-channel MOSFETs can be described by the same mechanism. From our results and model, we show that the trap density of the p-channel device is a strongly varying function of the Fermi level, whereas for the n-channel the trap density can be considered constant. We also show and explain, using the proposed model, the impact of the halo-implanted regions on the statistics of the noise. Using this model, we clarify why the variability, denoted by σ[log(SId)], of RTN/LFN doesn't follow a 1/√area dependence; and we demonstrate that the noise, and its variability, found in our measurements can be modeled using reasonable physical quantities. Moreover, the proposed model can be used to calculate the percentile quantity of the noise, which can be used to predict or to achieve certain circuit yield.
2

A physics-based statistical random telegraph noise model / Um modelo estatistico e fisicamente baseado para o minimo RTN

Silva, Maurício Banaszeski da January 2016 (has links)
O Ruído de Baixa Frequência (LFN), tais como o ruído flicker e o Random Telegraph Noise (RTN), são limitadores de performance em muitos circuitos analógicos e digitais. Para transistores diminutos, a densidade espectral de potência do ruído pode variar muitas ordens de grandeza, impondo uma séria limitação na performance do circuito e também em sua confiabilidade. Nesta tese, nós propomos um novo modelo de RTN estatístico para descrever o ruído de baixa frequência em MOSFETs. Utilizando o modelo proposto, pode-se explicar e calcular o valor esperado e a variabilidade do ruído em função das polarizações, geometrias e dos parâmetros físicos do transistor. O modelo é validado através de inúmeros resultados experimentais para dispositivos com canais tipo n e p, e para diferentes tecnologias CMOS. É demonstrado que a estatística do ruído LFN dos dispositivos de canal tipo n e p podem ser descritos através do mesmo mecanismo. Através dos nossos resultados e do nosso modelo, nós mostramos que a densidade de armadilhas dos transistores de canal tipo p é fortemente dependente do nível de Fermi, enquanto para o transistor de tipo n a densidade de armadilhas pode ser considerada constante na energia. Também é mostrado e explicado, através do nosso modelo, o impacto do implante de halo nas estatísticas do ruído. Utilizando o modelo demonstra-se porque a variabilidade, denotado por σ[log(SId)], do RTN/LFN não segue uma dependência 1/√área; e fica demonstrado que o ruído, e sua variabilidade, encontrado em nossas medidas pode ser modelado utilizando parâmetros físicos. Além disso, o modelo proposto pode ser utilizado para calcular o percentil do ruído, o qual pode ser utilizado para prever ou alcançar certo rendimento do circuito. / Low Frequency Noise (LFN) and Random Telegraph Noise (RTN) are performance limiters in many analog and digital circuits. For small area devices, the noise power spectral density can easily vary by many orders of magnitude, imposing serious threat on circuit performance and possibly reliability. In this thesis, we propose a new RTN model to describe the statistics of the low frequency noise in MOSFETs. Using the proposed model, we can explain and calculate the Expected value and Variability of the noise as function of devices’ biases, geometry and physical parameters. The model is validated through numerous experimental results for n-channel and p-channel devices from different CMOS technology nodes. We show that the LFN statistics of n-channel and p-channel MOSFETs can be described by the same mechanism. From our results and model, we show that the trap density of the p-channel device is a strongly varying function of the Fermi level, whereas for the n-channel the trap density can be considered constant. We also show and explain, using the proposed model, the impact of the halo-implanted regions on the statistics of the noise. Using this model, we clarify why the variability, denoted by σ[log(SId)], of RTN/LFN doesn't follow a 1/√area dependence; and we demonstrate that the noise, and its variability, found in our measurements can be modeled using reasonable physical quantities. Moreover, the proposed model can be used to calculate the percentile quantity of the noise, which can be used to predict or to achieve certain circuit yield.
3

A physics-based statistical random telegraph noise model / Um modelo estatistico e fisicamente baseado para o minimo RTN

Silva, Maurício Banaszeski da January 2016 (has links)
O Ruído de Baixa Frequência (LFN), tais como o ruído flicker e o Random Telegraph Noise (RTN), são limitadores de performance em muitos circuitos analógicos e digitais. Para transistores diminutos, a densidade espectral de potência do ruído pode variar muitas ordens de grandeza, impondo uma séria limitação na performance do circuito e também em sua confiabilidade. Nesta tese, nós propomos um novo modelo de RTN estatístico para descrever o ruído de baixa frequência em MOSFETs. Utilizando o modelo proposto, pode-se explicar e calcular o valor esperado e a variabilidade do ruído em função das polarizações, geometrias e dos parâmetros físicos do transistor. O modelo é validado através de inúmeros resultados experimentais para dispositivos com canais tipo n e p, e para diferentes tecnologias CMOS. É demonstrado que a estatística do ruído LFN dos dispositivos de canal tipo n e p podem ser descritos através do mesmo mecanismo. Através dos nossos resultados e do nosso modelo, nós mostramos que a densidade de armadilhas dos transistores de canal tipo p é fortemente dependente do nível de Fermi, enquanto para o transistor de tipo n a densidade de armadilhas pode ser considerada constante na energia. Também é mostrado e explicado, através do nosso modelo, o impacto do implante de halo nas estatísticas do ruído. Utilizando o modelo demonstra-se porque a variabilidade, denotado por σ[log(SId)], do RTN/LFN não segue uma dependência 1/√área; e fica demonstrado que o ruído, e sua variabilidade, encontrado em nossas medidas pode ser modelado utilizando parâmetros físicos. Além disso, o modelo proposto pode ser utilizado para calcular o percentil do ruído, o qual pode ser utilizado para prever ou alcançar certo rendimento do circuito. / Low Frequency Noise (LFN) and Random Telegraph Noise (RTN) are performance limiters in many analog and digital circuits. For small area devices, the noise power spectral density can easily vary by many orders of magnitude, imposing serious threat on circuit performance and possibly reliability. In this thesis, we propose a new RTN model to describe the statistics of the low frequency noise in MOSFETs. Using the proposed model, we can explain and calculate the Expected value and Variability of the noise as function of devices’ biases, geometry and physical parameters. The model is validated through numerous experimental results for n-channel and p-channel devices from different CMOS technology nodes. We show that the LFN statistics of n-channel and p-channel MOSFETs can be described by the same mechanism. From our results and model, we show that the trap density of the p-channel device is a strongly varying function of the Fermi level, whereas for the n-channel the trap density can be considered constant. We also show and explain, using the proposed model, the impact of the halo-implanted regions on the statistics of the noise. Using this model, we clarify why the variability, denoted by σ[log(SId)], of RTN/LFN doesn't follow a 1/√area dependence; and we demonstrate that the noise, and its variability, found in our measurements can be modeled using reasonable physical quantities. Moreover, the proposed model can be used to calculate the percentile quantity of the noise, which can be used to predict or to achieve certain circuit yield.
4

Caracterisation et modelisation du bruit basse frequence des composants bipolaires et a effet de champ pour applications micro-ondes

RENNANE, Abdelali 17 December 2004 (has links) (PDF)
Le travail presente dans ce memoire a pour objet principal l'etude des phenomenes de bruit du fond electrique basse frequence dans des transistors pour applications micro-ondes de type effet de champ (HEMT) sur SiGe et GaN ainsi que de type bipolaire a heterojonction (TBH) a base de silicium-germanium (SiGe). Dans un premier chapitre nous rappelons les caracteristiques et proprietes essentielles des sources de bruit en exces que l'on rencontre generalement dans ce type de composants et proposons une description des bancs de mesure de bruit mis en oeuvre. Dans les deuxieme et troisieme chapitres, nous proposons une analyse detaillee de l'evolution du bruit observe en fonction de la frequence, de la polarisation, et de la geometrie sur des HEMTs des deux familles technologiques SiGe et GaN. Nous avons en particulier etudie les deux generateurs de bruit en courant en entree et en sortie respectivement iG et iD ainsi que leur correlation. Ceci nous a permis, en nous appuyant aussi sur l'analyse des caracteristiques statiques des transistors, d'identifier les diverses sources de bruit en exces presentes dans ces composants et de faire des hypotheses sur leurs origines. Le dernier chapitre est consacre aux TBHs a base de SiGe. Dans une premiere partie nous etablissons comment varie le bruit basse frequence de TBHs, fabriques par un premier constructeur, en fonction de la polarisation, de la geometrie et de la fraction molaire de germanium. Dans une seconde partie nous mettons en evidence, d'apres nos observations effectuees sur des TBHs fabriques par un second constructeur, l'impact important sur le bruit BF de stress thermiques appliques sur ce type de composants.
5

Caractérisation et modélisation électrique de substrats SOI avancés / Electrical characterization and modeling of advanced SOI substrates

Pirro, Luca 24 November 2015 (has links)
Les substrats Silicium-sur-Isolant (SOI) représentent la meilleure solution pour obtenir des dispositifs microélectroniques ayant de hautes performances. Des méthodes de caractérisation électrique sont nécessaires pour contrôler la qualité SOI avant la réalisation complète de transistors. La configuration classique utilisée pour les mesures du SOI est le pseudo-MOFSET. Dans cette thèse, nous nous concentrons sur l'amélioration des techniques autour du Ψ-MOFSET, pour la caractérisation des plaques SOI et III-V. Le protocole expérimental de mesures statiques ID-VG a été amélioré par l'utilisation d'un contact par le vide en face arrière, permettant ainsi d'augmenter la stabilité des mesures. De plus, il a été prouvé que ce contact est essentiel pour obtenir des valeurs correctes de capacité avec les méthodes split-CV et quasi-statique. L'extraction des valeurs de Dit avec split-CV a été explorée, et un model physique nous a permis de démontrer que ceci n'est pas possible pour des échantillons SOI typiquement utilisés, à cause de la constante de temps reliée à la formation du canal. Cette limitation a été résolue un effectuant des mesures de capacité quasi-statique (QSCV). La signature des Dit a été mise en évidence expérimentalement et expliquée physiquement. Dans le cas d'échantillons passivés, les mesures QSCV sont plus sensibles à l'interface silicium-BOX. Pour les échantillons non passivés, un grand pic dû à des défauts d'interface apparait pour des valeurs d'énergie bien identifiées et correspondant aux défauts à l'interface film de silicium-oxyde natif. Nous présentons des mesures de bruit à basses fréquences, ainsi qu'un model physique démontrant que le signal émerge de régions localisées autour des contacts source et drain. / Silicon-on-insulator (SOI) substrates represent the best solution to achieve high performance devices. Electrical characterization methods are required to monitor the material quality before full transistor fabrication. The classical configuration used for SOI measurements is the pseudo-MOSFET. In this thesis, we focused on the enrichment of techniques in Ψ-MOSFET for the characterization of bare SOI and III-V wafers. The experimental setup for static ID-VG was improved using a vacuum contact for the back gate, increasing the measurement stability. Furthermore, this contact proved to be critical for achieving correct capacitance values with split-CV and quasi-static techniques (QSCV). We addressed the possibility to extract Dit values from split-CV and we demonstrated by modeling that it is impossible in typical sized SOI samples because of the time constant associated to the channel formation. The limitation was solved performing QSCV measurements. Dit signature was experimentally evidenced and physically described. Several SOI structures (thick and ultra-thin silicon films and BOX) were characterized. In case of passivated samples, the QSCV is mostly sensitive to the silicon film-BOX interface. In non-passivated wafers, a large defect related peak appears at constant energy value, independently of the film thickness; it is associated to the native oxide present on the silicon surface. For low-frequency noise measurements, a physical model proved that the signal arises from localized regions surrounding the source and drain contacts.

Page generated in 0.1341 seconds