• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Propriétés optiques et magnétiques de matériaux multiferroïques : gaFeO3 et LuFe2O4. / Optical and magnetic study on iron based multiferroics

Vitucci, Francesco Maria 17 December 2010 (has links)
Nous présentons une contribution à l’étude des propriétés structurales, électroniques et magnétiques de composés multiferroïques – c’est à dire de matériaux dans lesquels coexistent ordre magnétique et ordre ferroélectrique ; les deux aspects étant couplés via des interactions et mécanismes microscopiques qui ne sont pas encore compris. C’est dans ce contexte que nous avons étudié les deux composés GaFeO₃ et LuFe₂O₄. L’étude a nécessité l’utilisation de plusieurs techniques expérimentales : les mesures magnétiques locales par résonance paramagnétique électronique (RPE) et macroscopiques par magnétométrie , et la spectroscopie infrarouge (IR). Du point de vue du magnétisme de GaFeO₃, les mesures locales et macroscopiques révèlent un comportement inusuel sur un large intervalle de température au-dessus de la température d’ordre, que nous attribuons à l’existence de corrélations magnétiques de courte portée dans la phase paramagnétique. D’autre part,l’analyse des spectres de phonon IR en fonction de la température montre que la mise en ordre des moments magnétiques n’affecte pas les propriétés structurales de GaFeO₃. Le cas de LuFe₂O₄ est très différent puisque les degrés de liberté magnétiques semblent couplés aux propriétés structurales au travers de l’ordre de charge des ions Fe³+/Fe²+ comme le suggèrent les mesures RPE et de spectroscopie IR dans le domaine sub-terahertz. / We present a contribution to the study of structural, electronic and magnetic propertiesof multiferroic compounds. These materials – characterized by the coexistence and coupling of different types of long-range orders, such as magnetic and ferroelectic – have recently become a subject of great importance because of their academic interest and their significance for potential applications. In this context we have studied the two compounds GaFeO₃ and LuFe₂O₄. The study involved the use of several techniques : electronic spin resonance (ESR), magnetic measurements by magnetometry and infrared spectroscopy (IR).Local and macroscopic magnetic measurements reveal an anomalous paramagnetic phase in GaFeO3. This is attributed to the existence of short-range magnetic correlations in a wide temperature range above the ordering temperature. On the other hand, the analysis of IR phonon spectra recorded at different temperatures (10 ≤ T ≤ 1000 K) shows that the ordering of magnetic moments does not affect the structural properties of GaFeO₃ For LuFe₂O₄, conversely, the magnetic degrees of freedom are coupled to the structural properties via the charge ordering of Fe³+/Fe²+ ions, as suggested by ESR and IR spectroscopy.
2

An x-ray spectroscopic study of novel materials for electronic applications

Raekers, Michael 08 June 2009 (has links)
The electronic and magnetic structure of the colossal magneto resistance material La1-xSrxMnO3, the high-k and strain tailoring compounds REScO3 (Sm, Gd, Dy) and the multiferroic LuFe2O4 was investigated by means of x-ray spectroscopic techniques. SQUID measurements of La1-xSrxMnO3 (x = 0.125, 0.17, 0.36) were compared with XMCD results. The very good agreement between these two experiments proofs the applicability of the correction factor for the spin magnetic moment and the importance of charge transfer. The magnetic moment measured by SQUID and that determined from XMCD proofs that the magnetic moment is completely localized at the Mn ions for different temperatures and magnetic fields. For x = 0.125 the orbital magnetic moment determined from XMCD corresponds to the structural changes in the phase diagram. Additionally the measured orbital moments correspond to anomalies in magnetization versus temperature curves. The magnetic and electronic structure of the rare earth scandates (SmScO3, GdScO3 and DyScO3) were investigated by means of XPS, XES, XAS, SQUID and neutron powder diffraction. The magnetic measurements reveal antiferromagnetic coupling at low temperatures in agreement with neutron diffraction data. With XAS and XES at the O K-edge in comparison with band structure calculations of the unoccupied oxygen states, the band gaps of REScO3 were determined and it was found that these values are corresponding to the Sc-O mean distances. The electronic and magnetic structure of LuFe2O4 was presented. The valence state of Fe ions was determined to 50% divalent and 50% trivalent by XPS of Fe 2p and 3s levels. The big orbital magnetic moment found by XMCD could explain a discrepancy between the magnetic measurements and the spin configuration, which was confirmed by XMCD.

Page generated in 0.0159 seconds