• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estabilidade assintótica de uma classe de sistemas não lineares

Pavan, Jucilene de Fátima [UNESP] 19 February 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:55Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-02-19Bitstream added on 2014-06-13T18:06:55Z : No. of bitstreams: 1 pavan_jf_me_sjrp.pdf: 525723 bytes, checksum: 14295e01658745f42b4e6dd2b22c1791 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / No presente trabalho consideramos o sistema de equações diferenciais ordinároas x1 = afλ 1 (x1)+ bfµ 2 (x2) ˙ x2 = cfη 1 (x1)+ dfζ 2 (x2) (I) onde a,b,c e d são coeficientes constantes, λ, ,η e ζ são números racionais positivos numeradores e denominadores ímpares, as funções fi :(−h,h) → R, h> 0, são contínuas e satisfazem as condições fi(0)=0,i =1, 2e xifi(xi) > 0,para xi =0,i =1, 2. Associado ao sistema(I) consideramos a seguinte função V = α Z x1 0 fξ 1 (τ )dτ + Z x2 0 fθ 2 (τ )dτ, (II) onde ξ e θ são número racionais numeradores e denominadores ímpares. Nosso objetivo principal é encontar é encontrar sob quais condições dos parâmetros a,b,c,d e α> 0 a função V definidaem(II) é uma função de Liapunov estita para a solução nula dos sitema (I), o que leva a concluir a estabilidade assintótica da solução nula. / In this work we consider the system of ordinary differential equations x1 = afλ 1 (x1)+ bfµ 2 (x2) ˙ x2 = cfη 1 (x1)+ dfζ 2 (x2) (I) where a,b,c and d are constantco efficients, λ, ,η and ζ a repositive rational numbers with odd numerators and denominators ,and the functions fi :(−h,h) → R, h> 0,are continuous and satisfy the conditions fi(0)=0,i =1, 2and xifi(xi) > 0,for xi =0,i = 1, 2. Associated to the system(I) we consider the following function V = α Z x1 0 fξ 1 (τ )dτ + Z x2 0 fθ 2 (τ )dτ, (II) where ξ and θ are positive rational numbers with odd numerators and denominators and α is a positive constant. Our main goal is find under what conditions the parameters a,b,c,d and α> 0 the function V defined in(II) is a strict Liapunov function for the zero solution of the system (I), which leads us to conclude the asymptotic stability of zero solution.
2

Estabilidade assintótica de uma classe de sistemas não lineares /

Pavan, Jucilene de Fátima. January 2010 (has links)
Orientador: German Jesus Lozada Cruz / Banca: Luíz Agusto Fernandes de Oliveira / Banca: Adalberto Spezamiglio / Resumo: No presente trabalho consideramos o sistema de equações diferenciais ordinároas x1 = afλ 1 (x1)+ bfµ 2 (x2) ˙ x2 = cfη 1 (x1)+ dfζ 2 (x2) (I) onde a,b,c e d são coeficientes constantes, λ, ,η e ζ são números racionais positivos numeradores e denominadores ímpares, as funções fi :(−h,h) → R, h> 0, são contínuas e satisfazem as condições fi(0)=0,i =1, 2e xifi(xi) > 0,para xi =0,i =1, 2. Associado ao sistema(I) consideramos a seguinte função V = α Z x1 0 fξ 1 (τ )dτ + Z x2 0 fθ 2 (τ )dτ, (II) onde ξ e θ são número racionais numeradores e denominadores ímpares. Nosso objetivo principal é encontar é encontrar sob quais condições dos parâmetros a,b,c,d e α> 0 a função V definidaem(II) é uma função de Liapunov estita para a solução nula dos sitema (I), o que leva a concluir a estabilidade assintótica da solução nula. / Abstract: In this work we consider the system of ordinary differential equations x1 = afλ 1 (x1)+ bfµ 2 (x2) ˙ x2 = cfη 1 (x1)+ dfζ 2 (x2) (I) where a,b,c and d are constantco efficients, λ, ,η and ζ a repositive rational numbers with odd numerators and denominators ,and the functions fi :(−h,h) → R, h> 0,are continuous and satisfy the conditions fi(0)=0,i =1, 2and xifi(xi) > 0,for xi =0,i = 1, 2. Associated to the system(I) we consider the following function V = α Z x1 0 fξ 1 (τ )dτ + Z x2 0 fθ 2 (τ )dτ, (II) where ξ and θ are positive rational numbers with odd numerators and denominators and α is a positive constant. Our main goal is find under what conditions the parameters a,b,c,d and α> 0 the function V defined in(II) is a strict Liapunov function for the zero solution of the system (I), which leads us to conclude the asymptotic stability of zero solution. / Mestre

Page generated in 0.0536 seconds