• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 373
  • 65
  • 60
  • 51
  • 26
  • 17
  • 11
  • 5
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 762
  • 295
  • 269
  • 241
  • 187
  • 174
  • 173
  • 172
  • 171
  • 170
  • 170
  • 170
  • 170
  • 138
  • 107
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

The quantification of discarded unused motor-vehicle oil and an assessment of its environmental impact in Johannesburg

Shaik, Fatima Bebe 05 February 2009 (has links)
M.Sc. / It is estimated that there are approximately 6.9 million vehicles operating on South African roads, four million (58%) of which represent passenger cars. (Mbendi, 2002a). The number of vehicles operating on national roads increase annually. For motor vehicle engines to perform optimally, among other components, they require engine oil. Nationally in 2002, approximately 40 million litres of motor oil were sold at service station forecourts. For the same period, Gauteng motor oil sales exceeded 17.5 million litres while 76% of these sales occurred in Johannesburg (Maneveld, 2003b). When motor oil is poured into an engine there is always an amount of oil that remains in the container. In this study the author quantifies the amount of unused motor oil that is discarded into the environment via the containers that carry it and makes an assessment of the associated environmental implications. In the South African context, no documented data regarding this problem exists. Chapter one provides the background and motivation to the study, an explicit description of the problem being researched, objectives of the research, the study area and a brief description of the research methodology. This chapter defines the parameters within which the research took place. Chapter two briefly describes the South African oil and lubricants industry. It also focuses on lubricant manufacture, blending, composition, use and properties of lubricants. Chapter three details the research methodology and data collection procedures. This is followed by an analysis of the pilot and main study encompassing statistical interpretation and synthesis. Graphical and photographic illustrations are used. Conclusions were reached on the basis of factual information. Chapter four collates the information from previous chapters, which enables the author to make projections and quantify the amount of unused oil discarded into the environment. An assessment of the associated environmental implications is then determined. In the last chapter, limitations of the study are discussed. This is followed by concluding statements, proposals for further research and recommendations to address the research problem.
142

TRIBOCHEMICAL REACTIONS IN VARIOUS HYDROCARBON FLUID MIXTURES

Hong, Frank T. 11 1900 (has links)
Parasitic friction and material wear exist in all moving parts, causing about 20% in global energy loss annually. Machinery startup accounts for a major portion of this loss. This issue involves a boundary lubrication problem, where rubbing surfaces are inadequately covered by lubricating oils. Lubricating oil fluids rely on tribochemical reactions to establish metalorganic tribofilms that protect the contacting surfaces. The improved oil lubrication mechanism can ensure smooth operation, improving efficiency, and extending the mechanical component lifetime. In this thesis, we study tribochemical reactions resulting from various fuel and oil blends. The interactions among blended additives are given particular attention. Lubrication phenomena are simulated using a ball-on-disk linear reciprocation configuration in a standardized tribological test rig, Optimol SRV5. The tribofilm growth patterns are investigated by measuring friction and electrical contact resistance (ECR), followed by a detailed surface analysis. The proposed lubrication mechanisms are verified with experimental and numerical simulation results. Fuel lubrication studies are conducted by investigating a) lubricity loss upon the addition of multiple oxygenated compounds, b) accelerated material wear rates observed in dieselethanol fuel blends, and c) enhanced lubrication performances with carbon-based nanofluid fuels. Lubricity loss is found to correlate with: ● Extended induction periods for ECR rises, ● Reduced average electrical contact resistance values, and ● Inhibitions of protective frictional species formations (e.g., iron oxides and graphite). The developed tribochemical reaction model advances the design of friction and extremepressure modifiers using tribo-active nanomaterials. For instance, adding carbon-based nanomaterials to fuels enhances lubrication performance by serving as tribo-active materials to accelerate tribofilm formation and by replenishing damaged surfaces. In engine oil systems, we demonstrated that the lubrication performance could be enhanced by formulating TiO2 nanoparticles modified by gallic acid esters, and polyether-based co(ter)polymers. Based on the tribochemical reaction mechanisms found in this study, we propose more designs of functionalized nanomaterials for advanced lubricant applications in future work.
143

A literature review of slip ring performance and an evaluation of four lubricants in a slip ring wear application

Webb, Robert D. 02 February 2010 (has links)
Master of Science
144

Biotribology: The Effect of Lubricant and Load on Articular Cartilage Wear and Friction

Owellen, Michael C. 01 September 1997 (has links)
This paper presents a biotribological study on cartilage wear and friction, using a system of cartilage-on-stainless steel. This study is a part of the ongoing biotribology research by Dr. Furey at the Virginia Polytechnic Institute and State University. Two loads (65 N and 20 N) and three lubricants (saline reference, reference + hyaluronic acid, and bovine synovial fluid) were tested and evaluated using several analysis techniques. These techniques included wear analysis by hydroxyproline measurement, scanning electron microscopy (SEM), histologic sectioning and staining, numerical analysis of friction and specimen displacement data, and Fourier transform infrared (FTIR) analysis. Biochemical wear analysis showed that, under high load, the saline reference generated the most wear, hyaluronic acid produced less wear, and bovine synovial fluid produced the least. Wear was sensitive to load with all three lubricants, but was not significantly affected by the lubricant under low load. SEM photographs and histologic sections showed evidence of plowing and surface delamination, as well as another wear mechanism that produced wear markings perpendicular to the direction of sliding. Opaque films remained on the polished stainless steel disks after saline and hyaluronic acid tests, but not after synovial fluid tests. FTIR analysis of these films, as well as fresh and worn cartilage, showed that the cartilage experienced chemical changes during sliding. / Master of Science
145

Representative tribometer testing of wire rope fretting contacts: the effect of lubrication on fretting wear

Dyson, C.J., Chittenden, R.J., Priest, Martin, Fox, M.F., Hopkins, W.A. 19 February 2020 (has links)
Yes / Fretting wear has a significant influence on wire rope fatigue life when in cyclic bending, particularly for crossed-wire contacts, where the interfacial motion of the surfaces is complex and multi-axial. To simulate these contacts in a controlled manner, a laboratory-scale, crossed-cylinder, reciprocating fretting wear test was developed. A broad range of contemporary lubrication technologies were evaluated using this method and a systematic multivariate statistical analysis was performed to identify the most significant lubrication-related parameters with respect to these fretting wear conditions. Wear area increase per slip cycle was the most relevant measure of wear damage, as this captured the influence of changes in the fretting wear regime during the test. The ability of a lubricant to reduce damaging fretting wear during the run-in phase was the biggest influence on long-term fretting wear, particularly for grease-lubricated contacts.
146

Volumetric Properties and Viscosity of Lubricant Oils and the Effects of Additives at High Pressure and Temperatures

Avery, Katrina Nichole 26 February 2024 (has links)
This research is directed to the characterization of the thermodynamic properties and viscosity of lubricant base oils modified with polymeric additives. Several groups of mineral and synthetic base oils, including Ultra S4, Ultra S8, and poly alpha olefin PAO 4 have been studied. Among the various types of additives explored were viscosity index modifiers, polyisobutylene polymers (PIBs), and dispersants. The viscosity index modifiers are studied in terms of different polymer architectures, molecular weights, presence or absence of functional groups, and their concentrations. The dispersants are studied in terms of concentration, molecular weight, and presence of capping groups. Density data, as the basic thermodynamic data, are generated using a high-pressure variable-volume view-cell over a pressure range from 10 to 40 MPa and a range of temperatures from 298 to 398 K. The density data are then correlated with the Sanchez-Lacombe equation of state, from which key thermodynamic properties, namely isothermal compressibility, isobaric expansivity, and internal pressure are derived. These properties offer a rational approach to better understand molecular packing in lubricants under high pressure and temperature conditions which has direct impact on film formation. Viscosity determinations are carried out using a custom-designed high-pressure rotational viscometer. Data were generated in the pressure range from 10 to 40 MPa, but at temperatures ranging from 298 to 373 K as a function of shear rate up to 1270 s-1. Viscosity data were then correlated with density which provides interpretations in terms of free-volume and density scaling models. The molecular parameters produced from these correlations support the interpretation of molecular packing under high pressure and temperature conditions. The results of this study included several key findings. With regards to density, the addition of viscosity index modifiers to Ultra S4 base oil caused the density to increase, except for the addition of functionalized olefin copolymers (OCPs) which caused the density to decrease. This was true with both high and low molecular weight additives. In the case of Ultra S8 base oil, the addition of OCPs generally decreased the density, while the addition of polymethacrylates (PMAs) caused the density to increase. In terms of compressibility and expansivity, the addition of high molecular weight viscosity index modifiers to Ultra S4 base oil generally decreased both these properties. However, the compressibility increased with the addition of 5 wt % functionalized PMA and 2 wt % star styrene butadiene (SSB). Furthermore, there was less of a decrease in compressibility with the addition of functionalized additives. With the addition of low molecular weight viscosity index modifiers to Ultra S4 base oil, little change was observed in compressibility, and the expansivity decreased to a lesser degree than with the addition of high molecular weight viscosity index modifiers. Viscosity index modifiers did not alter the compressibility of Ultra S8 base oil. Compared to Ultra S4, expansivity in Ultra S8 decreased to a lesser extent. The internal pressure was observed to be lowered to a greater degree in either Ultra S4 or Ultra S8 base oil with the addition of additives with more rigid internal structures (PMA and SSB). The decrease occurred to a greater degree with the addition of the higher molecular weight versions of additives studied and/or with the incorporation of functional groups to the additives. Although density changes were often greater with the addition of additives to the Ultra S8 base oil, all other derived thermodynamic properties, including internal pressure, changed to a greater degree with the addition of additives to the lower molecular weight Ultra S4 base oil. The viscosity generally increased to varying degrees with the addition of different additives to either base oil. The addition of functionality and higher molecular weight additives led to more consistent viscosity increases at higher temperatures. At the highest viscosity isotherm tested, 373 K, the addition of viscosity index modifiers resulted in similar viscosity values in either base oil, even though the viscosity of Ultra S4 at 373 K is much lower than the viscosity of Ultra S8 at this temperature. However, at 298 K, the viscosity index modifiers increased the viscosity of the Ultra S8 base oil to much higher values than the viscosity of the Ultra S4 base oil. Model based correlations of viscosity showed that with addition of high molecular weight viscosity index modifiers to Ultra S4 base oil, the parameters that are linked to free-volume overlap and the density dependence were more sensitive to the addition of OCPs than with the addition of PMAs and SSBs. These changes were reflected in larger free-volume overlap parameters and larger density exponent values. However, with a low molecular weight addition, the resulting parameters changed more with the addition of PMAs than OCPs. Overall, the addition of polymers with more rigid architecture led to more similar changes in correlative parameters across molecular weights from that of the original base oil, while for the OCP addition, the molecular weight had more of an influence on the degree of change. With addition of viscosity index modifiers to the Ultra S8 base oil, the architecture of the additive had more of an influence on the viscosity correlation parameters as the addition of PMA led to more noticeable changes in the parameters (resulting in lower free-volume overlap parameters, and a lower density exponent) than the addition of OCP, irrespective of the molecular weight or functionality. In either base oil, the addition of PMA led to lower free-volume overlap parameters and density exponent values than the addition of OCP. In this study it was observed that the addition of functionality, or polar groups to viscosity index modifiers, led to more desirable thermodynamic and rheological property changes to the lubrication base oil. This change was more definitive with the addition of polymers with more rigid architecture, such as PMAs and SSBs in contrast to the OCPs. The study on the addition of PIBs and capped or uncapped dispersants showed little variation in the resulting density and viscosity values when added to Ultra S4 base oil. However, the compressibility in these systems generally increased while the expansivity decreased except with the addition of PIBs. The internal pressure decreased to similar levels for all additive additions, except for the lowest molecular weight PIB, in which there was little change. The study on the addition of PIBs to different base oils showed that low molecular weight PIBs had the potential to disrupt the packing of a more uniform PAO 4 base oil and change the thermodynamic properties and correlation parameters to a greater degree than with the addition of higher molecular weight PIBs. This resulted in higher compressibility and internal pressure values with the addition of low molecular weight PIB compared to the higher molecular weight PIBs. However, there was little variation in viscosity with any of the PIB additions, except for the highest molecular weight PIB. / Doctor of Philosophy / Several legislations have recently been passed which are aimed at improving the fuel efficiency in cars. One way to improve fuel efficiency is to reduce friction through improvements on the lubrication systems such as engine oils and transmission fluids. This applies to lubricants operating under cold start conditions and up to operating condition of approximately 100ºC. Additionally, the lubricants are subject to extreme pressure conditions when they are squeezed between contacts such as gears or clutch plates. Therefore, it is crucial to explore lubricant performance under high pressure and temperature conditions. The lubricants that are preferred are those that form a layer that completely protects metal contacts without causing the contacts difficulty in moving, causing a loss in efficiency. The desired film layer thickness under high pressure and temperature conditions can be improved using different additives. This thesis explores high pressure and temperature behavior of lubricant systems modified with different types of additives using uniquely designed lab instrumentation. The focus is on understanding their volumetric and flow properties, which directly influence the film layer and effectiveness of the lubricant. Volumetric properties are characterized by measurement of density as a function of temperature and pressure. Density data provides insights on molecular packing in lubricant systems. Flow properties, specifically, resistance to flow, can help analyze a potential loss in efficiency caused by the lubricant systems. The thesis is thus a comprehensive study on the volumetric and flow properties of lubricants at a wide range of temperatures ( from 298 to 398 K) and pressures (from 10 to 40 MPa) and how these properties are affected in the presence of additives that aim to improve lubricant performance.
147

Friction and Wear Reduction via Ultrasonic Lubrication

Dong, Sheng 16 September 2015 (has links)
No description available.
148

Rate-controlling mechanism of lubricating oil oxidation /

Tse, Foo-heng January 1959 (has links)
No description available.
149

Modeling of water and lubricant sprays in hot metal working

Liu, Chun 10 December 2007 (has links)
No description available.
150

Evaluation of Lubricants for Stamping Deep Draw Quality Sheet Metal in Industrial Environment

Subramonian, Soumya January 2009 (has links)
No description available.

Page generated in 0.1078 seconds