• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 24
  • 20
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 5
  • 3
  • 1
  • Tagged with
  • 143
  • 143
  • 78
  • 23
  • 22
  • 15
  • 14
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Mobile-Based Smart Auscultation

Chitnis, Anurag Ashok 08 1900 (has links)
In developing countries, acute respiratory infections (ARIs) are responsible for two million deaths per year. Most victims are children who are less than 5 years old. Pneumonia kills 5000 children per day. The statistics for cardiovascular diseases (CVDs) are even more alarming. According to a 2009 report from the World Health Organization (WHO), CVDs kill 17 million people per year. In many resource-poor parts of the world such as India and China, many people are unable to access cardiologists, pulmonologists, and other specialists. Hence, low skilled health professionals are responsible for screening people for ARIs and CVDs in these areas. For example, in the rural areas of the Philippines, there is only one doctor for every 10,000 people. By contrast, the United States has one doctor for every 500 Americans. Due to advances in technology, it is now possible to use a smartphone for audio recording, signal processing, and machine learning. In my thesis, I have developed an Android application named Smart Auscultation. Auscultation is a process in which physicians listen to heart and lung sounds to diagnose disorders. Cardiologists spend years mastering this skill. The Smart Auscultation application is capable of recording and classifying heart sounds, and can be used by public or clinical health workers. This application can detect abnormal heart sounds with up to 92-98% accuracy. In addition, the application can record, but not yet classify, lung sounds. This application will be able to help save thousands of lives by allowing anyone to identify abnormal heart and lung sounds.
142

Pathobiologie de la hernie diaphragmatique congénitale expérimentale induite par l'exposition au nitrofène chez le rat / Pathobiology of experimental congenital diaphragmatic hernia induced by nitrofen in rat

Makanga, Martine 29 April 2015 (has links)
Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
143

PAK1's regulation of eosinophil migration and implications for asthmatic inflammation

Mwanthi, Muithi 19 December 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / More than 300 million people world-wide suffer from breathlessness, wheezing, chest tightness, and coughing characteristic of chronic bronchial asthma, the global incidence of which is on the rise. Allergen-sensitization and challenge elicits pulmonary expression of chemoattractants that promote a chronic eosinophil-rich infiltrate. Eosinophils are increasingly recognized as important myeloid effectors in chronic inflammation characteristic of asthma, although few eosinophil molecular signaling pathways have successfully been targeted in asthma therapy. p21 activated kinases (PAKs), members of the Ste-20 family of serine/threonine kinases, act as molecular switches in cytoskeletal-dependent processes involved in cellular motility. We hypothesized that PAK1 modulated eosinophil infiltration in an allergic airway disease (AAD) murine model. In this model, Pak1 deficient mice developed reduced inflammatory AAD responses in vivo with notable decreases in eosinophil infiltration in the lungs and broncho-alveolar lavage fluids (BALF). To test the importance of PAK1 in hematopoietic cells in AAD we used complementary bone marrow transplant experiments that demonstrated decreased eosinophil inflammation in hosts transplanted with Pak1 deficient bone marrow. In in vitro studies, we show that eotaxin-signaling through PAK1 facilitated eotaxin-mediated eosinophil migration. Ablating PAK1 expression by genetic deletion in hematopoietic progenitors or siRNA treatment in derived human eosinophils impaired eotaxin-mediated eosinophil migration, while ectopic PAK1 expression promoted this migration. Together these data suggest a key role for PAK1 in the development of atopic eosinophil inflammation and eotaxin-mediated eosinophil migration.

Page generated in 0.0546 seconds