Spelling suggestions: "subject:"mécanique dess fluides numérique (MFN)"" "subject:"mécanique dess fluides dunumérique (MFN)""
1 |
Extension de la méthode LS-STAG de type frontière immergée/cut-cell aux géométries 3D extrudées : applications aux écoulements newtoniens et non newtoniens / Extension of the LS-STAG immersed boundary/cut-cell method to 3D extruded geometries : Application to Newtonian and non-Newtonian flowsNikfarjam, Farhad 23 March 2018 (has links)
La méthode LS-STAG est une méthode de type frontière immergée/cut-cell pour le calcul d’écoulements visqueux incompressibles qui est basée sur la méthode MAC pour grilles cartésiennes décalées, où la frontière irrégulière est nettement représentée par sa fonction level-set, résultant en un gain significatif en ressources informatiques par rapport aux codes MFN commerciaux utilisant des maillages qui épousent la géométrie. La version 2D est maintenant bien établie et ce manuscrit présente son extension aux géométries 3D avec une symétrie translationnelle dans la direction z (configurations extrudées 3D). Cette étape intermédiaire sera considérée comme la clé de voûte du solveur 3D complet, puisque les problèmes de discrétisation et d’implémentation sur les machines à mémoire distribuée sont abordés à ce stade de développement. La méthode LS-STAG est ensuite appliquée à divers écoulements newtoniens et non-newtoniens dans des géométries extrudées 3D (conduite axisymétrique, cylindre circulaire, conduite cylindrique avec élargissement brusque, etc.) pour lesquels des résultats de références et des données expérimentales sont disponibles. Le but de ces investigations est d’évaluer la précision de la méthode LS-STAG, d’évaluer la polyvalence de la méthode pour les applications d’écoulement dans différents régimes (fluides newtoniens et rhéofluidifiants, écoulement laminaires stationnaires et instationnaires, écoulements granulaires) et de comparer ses performances avec de méthodes numériques bien établies (méthodes non structurées et de frontières immergées) / The LS-STAG method is an immersed boundary/cut-cell method for viscous incompressible flows based on the staggered MAC arrangement for Cartesian grids where the irregular boundary is sharply represented by its level-set function. This approach results in a significant gain in computer resources compared to commercial body-fitted CFD codes. The 2D version of LS-STAG method is now well-established and this manuscript presents its extension to 3D geometries with translational symmetry in the z direction (3D extruded configurations). This intermediate step will be regarded as the milestone for the full 3D solver, since both discretization and implementation issues on distributed memory machines are tackled at this stage of development. The LS-STAG method is then applied to Newtonian and non-Newtonian flows in 3D extruded geometries (axisymmetric pipe, circular cylinder, duct with an abrupt expansion, etc.) for which benchmark results and experimental data are available. The purpose of these investigations is to evaluate the accuracy of LS-STAG method, to assess the versatility of method for flow applications at various regimes (Newtonian and shear-thinning fluids, steady and unsteady laminar to turbulent flows, granular flows) and to compare its performance with well-established numerical methods (body-fitted and immersed boundary methods)
|
2 |
Numerical simulation of fresh SCC flow in wall and beam elements using flow dynamics models / Simulation numérique de l'écoulement du BAP dans des éléments de mur et de poutre en utilisant des modèles dynamiques d'écoulementHosseinpoor, Masoud January 2016 (has links)
Abstract : Recently, there is a great interest to study the flow characteristics of suspensions in different environmental and industrial applications, such as snow avalanches, debris flows, hydrotransport systems, and material casting processes. Regarding rheological aspects, the majority of these suspensions, such as fresh concrete, behave mostly as non-Newtonian fluids. Concrete is the most widely used construction material in the world. Due to the limitations that exist in terms of workability and formwork filling abilities of normal concrete, a new class of concrete that is able to flow under its own weight, especially through narrow gaps in the congested areas of the formwork was developed. Accordingly, self-consolidating concrete (SCC) is a novel construction material that is gaining market acceptance in various applications. Higher fluidity characteristics of SCC enable it to be used in a number of special applications, such as densely reinforced sections. However, higher flowability of SCC makes it more sensitive to segregation of coarse particles during flow (i.e., dynamic segregation) and thereafter at rest (i.e., static segregation). Dynamic segregation can increase when SCC flows over a long distance or in the presence of obstacles. Therefore, there is always a need to establish a trade-off between the flowability, passing ability, and stability properties of SCC suspensions. This should be taken into consideration to design the casting process and the mixture proportioning of SCC. This is called “workability design” of SCC. An efficient and non-expensive workability design approach consists of the prediction and optimization of the workability of the concrete mixtures for the selected construction processes, such as transportation, pumping, casting, compaction, and finishing. Indeed, the mixture proportioning of SCC should ensure the construction quality demands, such as demanded levels of flowability, passing ability, filling ability, and stability (dynamic and static). This is necessary to develop some theoretical tools to assess under what conditions the construction quality demands are satisfied. Accordingly, this thesis is dedicated to carry out analytical and numerical simulations to predict flow performance of SCC under different casting processes, such as pumping and tremie applications, or casting using buckets. The L-Box and T-Box set-ups can evaluate flow performance properties of SCC (e.g., flowability, passing ability, filling ability, shear-induced and gravitational dynamic segregation) in casting process of wall and beam elements. The specific objective of the study consists of relating numerical results of flow simulation of SCC in L-Box and T-Box test set-ups, reported in this thesis, to the flow performance properties of SCC during casting. Accordingly, the SCC is modeled as a heterogeneous material. Furthermore, an analytical model is proposed to predict flow performance of SCC in L-Box set-up using the Dam Break Theory. On the other hand, results of the numerical simulation of SCC casting in a reinforced beam are verified by experimental free surface profiles. The results of numerical simulations of SCC casting (modeled as a single homogeneous fluid), are used to determine the critical zones corresponding to the higher risks of segregation and blocking. The effects of rheological parameters, density, particle contents, distribution of reinforcing bars, and particle-bar interactions on flow performance of SCC are evaluated using CFD simulations of SCC flow in L-Box and T-box test set-ups (modeled as a heterogeneous material). Two new approaches are proposed to classify the SCC mixtures based on filling ability and performability properties, as a contribution of flowability, passing ability, and dynamic stability of SCC. / Résumé : Récemment, il y a un grand intérêt à étudier les caractéristiques d'écoulement des suspensions dans différentes applications environnementales et industrielles, telles que les avalanches des neiges, les coulées de débris, les systèmes de transport et les processus d’écoulement des matériaux. En ce qui concerne les aspects rhéologiques, la plupart des suspensions, comme le béton frais, se comportent comme un fluide non-Newtonien. Le béton est le matériau de construction le plus largement utilisé dans le monde. En raison de limites qui caractérisent le béton normal en termes de maniabilité et de capacité de remplissage de coffrage, il était nécessaire de développer une nouvelle classe de béton qui peut couler sous son propre poids, en particulier à travers les zones congestionnées du coffrage. Par conséquent, le béton autoplaçant (BAP) est un nouveau matériau de construction qui est de plus en plus utilisé dans les différentes applications. Étant donné sa fluidité élevée de BAP peut être utilisé dans certaines applications particulières, notamment dans la section densément renforcée. Cependant, la fluidité élevée rend le béton plus sensible à la ségrégation des gros granulats pendant l'écoulement (la ségrégation dynamique) et ensuite au repos (ségrégation statique). La ségrégation dynamique peut augmenter lorsque le BAP est coulé sur une longue distance ou en présence d'obstacles. Par conséquent, il est toujours nécessaire d'établir un compromis entre la fluidité, la capacité de passage, et la stabilité du BAP. Ceci doit être pris en considération afin de concevoir le processus de coulée et dosage des mélanges du BAP. Ceci est appelé la conception d'ouvrabilité du BAP. Une conception de maniabilité efficace et non coûteuse peut être achevée à travers la e prévision et l'optimisation de l'ouvrabilité des mélanges de béton pour les procédés de construction sélectionnés, notamment le transport, le pompage, la mise en place, le compactage, la finition, etc. En effet, les formulations de mélange doivent se confirmer à la qualité de la construction demandée, par exemple les niveaux exigés de fluidité, la capacité de passage, la capacité de remplissage, et la stabilité (statique et dynamique). Celui est nécessaire pour développer des outils théoriques afin d’évaluer dans quelles conditions les exigences de qualité de la construction sont satisfaites. Cette thèse est consacrée à la réaliser des simulations analytiques et numériques pour prédire la performance d'écoulement du BAP dans différents procédés de la mise en place du béton. L'objectif spécifique de cette étude consiste à simuler l'écoulement du BAP dans essais empiriques, notamment la boite en L et la boite en T pour évaluer la performance du BAP pendent la mise en place (la fluidité, la capacité de passage, la capacité de remplissage, et la ségrégation dynamique induite par cisaillement ou par gravité). Par conséquent, le BAP est modélisé comme matériau hétérogène. En outre, un modèle analytique est proposé pour prédire la performance à l'écoulement du BAP dans la boite en L en utilisant la théorie de Dam Break. D'autre part, les résultats des simulations numériques de l’écoulement du BAP dans une poutre renforcée sont comparés aux résultats expérimentaux par des profils de surface libres. Les résultats des simulations numériques de BAP coulée (modélisée comme un fluide homogène unique), sont utilisés pour déterminer les zones critiques correspondant à des risques plus élevés de ségrégation et de blocage. Les effets des paramètres rhéologiques, la masse volumique, le contenu des particules, la distribution de barres d'armature, et les interactions particule-barres sur les performances d'écoulement du BAP sont évaluées à l'aide de simulations MFN d’écoulement du BAP par les essais des L-Box et T-box (modélisée comme une matériau hétérogène). Deux nouvelles approches sont proposées pour classifier les mélanges du BAP sur la base de la capacité de remplissage, et les propriétés de performabilité, en fonction de la fluidité, la capacité de passage et de la stabilité dynamique du BAP.
|
Page generated in 0.1064 seconds