Spelling suggestions: "subject:"mélanges gaussien"" "subject:"mélanges gaussian""
1 |
Contribution à la classification par modèles de mélange et classification simultanée d’échantillons d’origines multiples / Contribution to Model-Based Clustering and Simultaneous Clustering of Samples Arising from Multiple OriginsLourme, Alexandre 17 June 2011 (has links)
Dans la première partie de cette thèse nous passons en revue la classification par modèle de mélange. En particulier nous décrivons une famille de mélanges gaussiens d’un usage courant, dont la parcimonie porte sur des paramètres d’interprétation géométrique. Comme ces modèles possèdent des inconvénients majeurs, nous leur opposons une nouvelle famille de mélanges dont la parcimonie porte sur des paramètres statistiques. Ces nouveaux modèles possèdent de nombreuses propriétés de stabilité qui les rendent mathématiquement cohérents et facilitent leur interprétation. Dans la seconde partie de ce travail nous présentons une méthode nouvelle dite de classification simultanée. Nous montrons que la classification d'un échantillon revient très souvent au partitionnement de plusieurs échantillons ; puis nous proposons d'établir un lien entre la population d'origine des différents échantillons. Ce lien, dont la nature varie selon le contexte, a toujours pour vocation de formaliser de façon réaliste une information commune aux données à classifier.Lorsque les échantillons sont décrits par des variables de même signification et que l'on cherche le même nombre de groupes dans chacun d'eux, nous établissons un lien stochastique entre populations conditionnelles. Lorsque les variables sont différentes mais sémantiquement proches d'un échantillon à l'autre, il se peut que leur pouvoir discriminant soit similaire et que l'imbrication des données conditionnelles soit comparable. Nous envisageons des mélanges spécifiques à ce contexte, liés par un chevauchement homogène de leurs composantes. / In the first part of this work we review the mixture model-based clustering method. In particular we describe a family of common Gaussian mixtures the parsimony of which is about geometrical parameters. As these models suffer from major drawbacks, we display new Gaussian mixtures the parsimony of which focuses on statistical parameters. These new models own many stability properties that make them mathematically consistent and facilitate their interpretation. In the second part of this work we display the so-called simultaneous clustering method. We highlight that the classification of a single sample can often be seen as a multiple sample clustering problem; then we propose to establish a link between the original population of the diverse samples. This link varies depending on the context but it always tries to formalize in a realistic way some common information of the samples to classify. When samples are described by variables with identical meaning and when the same number of groups is researched within each of them, we establish a stochastic link between the conditional populations. When the variables are different but semantically close through the diverse samples nevertheless their discriminant power may be similar and the nesting of the conditional data can be comparable. We consider specific mixtures dedicated to this context: the link between the populations consists in an homogeneous overlap of the components.
|
2 |
Contribution à la classification de variables dans les modèles de régression en grande dimension / Contribution to variable clusteringin high dimensional linear regression modelsYengo, Loïc 28 May 2014 (has links)
Cette thèse propose une contribution originale au domaine de la classification de variables en régression linéaire. Cette contribution se base sur une modélisation hiérarchique des coefficients de régression. Cette modélisation permet de considérer ces derniers comme des variables aléatoires distribuées selon un mélange de lois Gaussiennes ayant des centres différents mais des variances égales. Nous montrons dans cette thèse que l'algorithme EM, communément utilisé pour estimer les paramètres d'un modèle hiérarchique ne peut s'appliquer. En effet, l'étape E de l'algorithme n'est pas explicite pour notre modèle.Nous avons donc proposé une approche plus efficace pour l'estimation des paramètres grâce à l'utilisation de l'algorithme SEM-Gibbs. En plus de cette amélioration computationnelle, nous avons introduit une contrainte dans le modèle pour permettre d'effectuer une sélection de variables simultanément. Notre modèle présente de très bonnes qualités prédictives relativement aux approches classiques pour la réduction de la dimension en régression linéaire. Cette thèse présente aussi une extension de notre méthodologie dans le cadre de la régression Probit pour données binaires. Notre modèle modèle a de plus été généralisé en relâchant l'hypothèse de l'égalité des variances pour les composantes du mélange Gaussien. Les performances de ce modèle généralisé ont été comparées à celles du modèle initial à travers différents scénarios de simulations. Ce travail de recherche a conduit au développement du package R clere. Ce dernier package met en œuvre tous les algorithmes décrits dans cette thèse. / We proposed in this thesis an original contribution to the field of variable clustering in linear regression through a model-based approach. This contribution was made via a hierarchical modeling of the regression coefficients as random variables drawn from a mixture of Gaussian distributions with equal variances. Parameter estimation in the proposed model was shown to be challenging since the classical EM algorithm could not apply. We then developped a more efficient algorithm for parameter estimation, through the use of the SEM-Gibbs algorithm. Along with this computational improvement, we also enhanced our model to allow variable selection. Given the good predictive performances of the CLERE method compared to standard techniques for dimension reduction, we considred an extension of the latter to binary response data. This extension was studied in the context of Probit regression. We generalized our model by relaxing the assumption of equal variance for the components in the mixture of Gaussians. The performances of this generalization were compared to those of the initial model under different scenarios on simulated data. This research led to the development of the R package clere which implements most of the algorithms described in this thesis.
|
3 |
Sélection de variables pour la classification non supervisée par mélanges gaussiens. Application à l'étude de données transcriptomes.Maugis, Cathy 21 November 2008 (has links) (PDF)
Nous nous intéressons à la sélection de variables en classification non supervisée par mélanges gaussiens. Ces travaux sont en particulier motivés par la classification de gènes à partir de données transcriptomes. Dans les deux parties de cette thèse, le problème est ramené à celui de la sélection de modèles.<br />Dans la première partie, le modèle proposé, généralisant celui de Raftery et Dean (2006) permet de spécifier le rôle des variables vis-à-vis du processus de classification. Ainsi les variables non significatives peuvent être dépendantes d'une partie des variables retenues pour la classification. Ces modèles sont comparés grâce à un critère de type BIC. Leur identifiabilité est établie et la consistance du critère est démontrée sous des conditions de régularité. En pratique, le statut des variables est obtenu grâce à un algorithme imbriquant deux algorithmes descendants de sélection de variables pour la classification et pour la régression linéaire. L'intérêt de cette procédure est en particulier illustré sur des données transcriptomes. Une amélioration de la modélisation du rôle des variables, consistant à répartir les variables déclarées non significatives entre celles dépendantes et celles indépendantes des variables significatives pour la classification, est ensuite proposée pour pallier une surpénalisation de certains modèles. Enfin, la technologie des puces à ADN engendrant de nombreuses données manquantes, une extension de notre procédure tenant compte de l'existence de ces valeurs manquantes est suggérée, évitant leur<br />estimation préalable.<br />Dans la seconde partie, des mélanges gaussiens de formes spécifiques sont considérés et un critère pénalisé non asymptotique est proposé pour sélectionner simultanément le nombre de composantes du mélange et l'ensemble des variables pertinentes pour la classification. Un théorème général de sélection de modèles pour l'estimation de densités par maximum de vraisemblance, proposé par Massart (2007), est utilisé pour déterminer la forme de la pénalité. Ce théorème nécessite le contrôle de l'entropie à crochets des familles de mélanges gaussiens multidimensionnels étudiées. Ce critère dépendant de constantes multiplicatives inconnues, l'heuristique dite "de la pente" est mise en oeuvre pour permettre une utilisation effective de ce critère.
|
4 |
Prévision à court terme des flux de voyageurs : une approche par les réseaux bayésiens / Short-term passenger flow forecasting : a Bayesian network approachRoos, Jérémy 28 September 2018 (has links)
Dans ces travaux de thèse, nous proposons un modèle de prévision à court terme des flux de voyageurs basé sur les réseaux bayésiens. Ce modèle est destiné à répondre à des besoins opérationnels divers liés à l'information voyageurs, la régulation des flux ou encore la planification de l'offre de transport. Conçu pour s'adapter à tout type de configuration spatiale, il permet de combiner des sources de données hétérogènes (validations des titres de transport, comptages à bord des trains et offre de transport) et fournit une représentation intuitive des relations de causalité spatio-temporelles entre les flux. Sa capacité à gérer les données manquantes lui permet de réaliser des prédictions en temps réel même en cas de défaillances techniques ou d'absences de systèmes de collecte / In this thesis, we propose a Bayesian network model for short-term passenger flow forecasting. This model is intended to cater for various operational needs related to passenger information, passenger flow regulation or operation planning. As well as adapting to any spatial configuration, it is designed to combine heterogeneous data sources (ticket validation, on-board counts and transport service) and provides an intuitive representation of the causal spatio-temporal relationships between flows. Its ability to deal with missing data allows to make real-time predictions even in case of technical failures or absences of collection systems
|
5 |
Estimation de modèles de mélange probabilistes: une proposition pour un fonctionnement réparti et décentraliseNikseresht, Afshin 22 October 2008 (has links) (PDF)
Cette th`ese traite de l'estimation statistique distribu ́e, avec la motivation de, et l'application `a l'indexation multim ́edia par le contenu. Les algorithmes et les donn ́ees de divers contributeurs coop ́ereront vers un apprentissage statistique collectif. La contribution est un arrangement pour estimer une densit ́e de probabilit ́e multivariable, dans le cas ou` cette densit ́e prend la forme d'un mod`ele de m ́elange gaussien. Dans ce cadre, l'agr ́egation des mod`eles probabilistes de m ́elanges gaussiens de la mˆeme classe, mais estim ́es `a plusieurs nœuds sur diff ́erents ensembles de donn ́ees, est une n ́ecessit ́e typique `a laquelle nous nous int ́eressons dans cette th`ese. Les approches propo- s ́ees pour la fusion de m ́elanges gaussiens exigent uniquement le calcul mod ́er ́e `a chaque nœud et peu de donn ́ees de transit entre les nœuds. Ces deux propri ́et ́es sont obtenues en agr ́egeant des mod`eles via leurs (peu) param`etres plutˆot que par les donn ́ees multim ́edia. Dans la premi`ere approche, en supposant que les m ́elanges sont estim ́es ind ́ependamment, nous propageons leurs param`etres de fa ̧con d ́ecentralis ́ee (gossip), dans un r ́eseau, et agr ́egeons les mod`eles `a partir des nœuds reli ́es entre eux, pour am ́eliorer l'estimation. Les mod`eles de m ́elange sont en fait concat ́en ́es puis r ́eduits `a un nombre appropri ́e de composants gaussiens. Une modification de la divergence de Kullback conduit `a un processus it ́eratif pour estimer ce mod`ele agr ́eg ́e. Afin d'ap- porter une am ́elioration, l'agr ́egation est r ́ealis ́ee par la mod ́elisation bay ́esienne du probl`eme de groupement de composant de mod`ele de m ́elange gaussien et est r ́esolue en utilisant la m ́ethode variationnelle, appliqu ́ee au niveau de composant. Cela permet de d ́eterminer, par un processus simple, peu couˆteux et pr ́ecis, les attributions des composants qui devraient ˆetre agr ́eg ́es et le nombre de composants dans le m ́elange apr`es l'agr ́egation. Comme seulement les param`etres du mod`ele sont ́echang ́es sur le r ́eseau, le calcul et la charge du r ́eseau restent tr`es mod ́er ́es.
|
6 |
Contrôle de têtes parlantes par inversion acoustico-articulatoire pour l'apprentissage et la réhabilitation du langageBen Youssef, Atef 26 October 2011 (has links) (PDF)
Cette thèse présente un système de retour articulatoire visuel, dans lequel les articulateurs visibles et non visibles d'une tête parlante sont contrôlés par inversion à partir de la voix d'un locuteur. Notre approche de ce problème d'inversion est basée sur des modèles statistiques élaborés à partir de données acoustiques et articulatoires enregistrées sur un locuteur français à l'aide d'un articulographe électromagnétique. Un premier système combine des techniques de reconnaissance acoustique de la parole et de synthèse articulatoire basées sur des modèles de Markov cachés (HMMs). Un deuxième système utilise des modèles de mélanges gaussiens (GMMs) pour estimer directement les trajectoires articulatoires à partir du signal acoustique. Pour généraliser le système mono-locuteur à un système multi-locuteur, nous avons implémenté une méthode d'adaptation du locuteur basée sur la maximisation de la vraisemblance par régression linéaire (MLLR) que nous avons évaluée à l'aide un système de reconnaissance articulatoire de référence. Enfin, nous présentons un démonstrateur de retour articulatoire visuel.
|
7 |
Speaker adaptation of deep neural network acoustic models using Gaussian mixture model framework in automatic speech recognition systems / Utilisation de modèles gaussiens pour l'adaptation au locuteur de réseaux de neurones profonds dans un contexte de modélisation acoustique pour la reconnaissance de la paroleTomashenko, Natalia 01 December 2017 (has links)
Les différences entre conditions d'apprentissage et conditions de test peuvent considérablement dégrader la qualité des transcriptions produites par un système de reconnaissance automatique de la parole (RAP). L'adaptation est un moyen efficace pour réduire l'inadéquation entre les modèles du système et les données liées à un locuteur ou un canal acoustique particulier. Il existe deux types dominants de modèles acoustiques utilisés en RAP : les modèles de mélanges gaussiens (GMM) et les réseaux de neurones profonds (DNN). L'approche par modèles de Markov cachés (HMM) combinés à des GMM (GMM-HMM) a été l'une des techniques les plus utilisées dans les systèmes de RAP pendant de nombreuses décennies. Plusieurs techniques d'adaptation ont été développées pour ce type de modèles. Les modèles acoustiques combinant HMM et DNN (DNN-HMM) ont récemment permis de grandes avancées et surpassé les modèles GMM-HMM pour diverses tâches de RAP, mais l'adaptation au locuteur reste très difficile pour les modèles DNN-HMM. L'objectif principal de cette thèse est de développer une méthode de transfert efficace des algorithmes d'adaptation des modèles GMM aux modèles DNN. Une nouvelle approche pour l'adaptation au locuteur des modèles acoustiques de type DNN est proposée et étudiée : elle s'appuie sur l'utilisation de fonctions dérivées de GMM comme entrée d'un DNN. La technique proposée fournit un cadre général pour le transfert des algorithmes d'adaptation développés pour les GMM à l'adaptation des DNN. Elle est étudiée pour différents systèmes de RAP à l'état de l'art et s'avère efficace par rapport à d'autres techniques d'adaptation au locuteur, ainsi que complémentaire. / Differences between training and testing conditions may significantly degrade recognition accuracy in automatic speech recognition (ASR) systems. Adaptation is an efficient way to reduce the mismatch between models and data from a particular speaker or channel. There are two dominant types of acoustic models (AMs) used in ASR: Gaussian mixture models (GMMs) and deep neural networks (DNNs). The GMM hidden Markov model (GMM-HMM) approach has been one of the most common technique in ASR systems for many decades. Speaker adaptation is very effective for these AMs and various adaptation techniques have been developed for them. On the other hand, DNN-HMM AMs have recently achieved big advances and outperformed GMM-HMM models for various ASR tasks. However, speaker adaptation is still very challenging for these AMs. Many adaptation algorithms that work well for GMMs systems cannot be easily applied to DNNs because of the different nature of these models. The main purpose of this thesis is to develop a method for efficient transfer of adaptation algorithms from the GMM framework to DNN models. A novel approach for speaker adaptation of DNN AMs is proposed and investigated. The idea of this approach is based on using so-called GMM-derived features as input to a DNN. The proposed technique provides a general framework for transferring adaptation algorithms, developed for GMMs, to DNN adaptation. It is explored for various state-of-the-art ASR systems and is shown to be effective in comparison with other speaker adaptation techniques and complementary to them.
|
Page generated in 0.0792 seconds