Spelling suggestions: "subject:"mémoires résistivité none volatile"" "subject:"mémoires résistivité noun volatile""
1 |
Films minces et dispositifs à base de LixCoO₂ pour application potentielle aux mémoires résistives non volatiles / LixCoO₂-based thin films and devices for potential application to nonvolatile resistive memoriesNguyen, Van-Son 20 October 2017 (has links)
La mémoire Flash est actuellement extrêmement utilisée en tant que mémoire non volatile pour le stockage des données numériques dans presque tout type d'appareil électronique nomade (ordinateur portable, téléphone mobile, tablette, …). Pour dépasser ses limites actuelles (densité d'informations, endurance, rapidité), un grand nombre de recherches se développent notamment autour du concept de mémoires résistives qui repose sur la commutation entre différents niveaux de résistance, via l'application d'une tension.Les mémoires dont la variation de résistance dépend de réactions électrochimiques (ReRAM) sont potentiellement de bonnes candidates pour les mémoires non volatiles de prochaine génération; les mécanismes d'oxydo-réduction impliqués sont cependant souvent de type filamentaire, mettant notamment en jeu des migrations de cations d’éléments métalliques (provenant des électrodes), ou de lacunes d’oxygène. Ce caractère filamentaire rend difficilement atteignable la miniaturisation extrême, à l’échelle nanométrique.Dans cette thèse, une classe de matériaux particulière -utilisée dans le domaine du stockage d'énergie- est étudiée. L’objectif est d’approfondir l’origine des processus de commutation de résistance observés sur des films de LixCoO2. Nous caractérisons d'abord les propriétés structurales et électriques de tels films, ainsi que le comportement électrique des dispositifs élaborés à partir de ces films. Nous étudions ensuite les mécanismes électrochimiques qui sont à l’origine des commutations résistives, dans la configuration d’un contact micrométrique électrode/film/électrode. Nous cherchons à déterminer la validité d’un mécanisme qui avait été proposé auparavant, mais non démontré. Nous étudions également la cinétique de commutation des dispositifs, et proposons un modèle numérique permettant d’expliquer les résultats expérimentaux observés. Enfin, nous étudions l’applicabilité potentielle des dispositifs (intégrant les films de LixCoO2) aux mémoires Re-RAM au travers de leurs performances en termes d’endurance (nombre maximum de cycles d’écriture/effaçage), et de stabilité. En particulier, nous étudions l’influence de plusieurs paramètres (impulsions de tension, nature des électrodes, température et c…) sur ces performances. / Flash memory is now extensively used as non-volatile memory for digital data storage in most mobile electronic devices (laptop, mobile phone, tablet...). To overcome its current limits (e.g. low information density, low endurance and slow speed), many researches recently developed around the concept of resistive memories based on the switching between different resistance levels by applying appropriate bias voltages.Memories whose resistance variations depend on electrochemical reactions (ReRAM) are potentially good candidates towards next-generation non-volatile memories. The underlying redox mechanisms observed are however often of the filamentary type, involving in particular migration of cations of metal elements (coming from the electrodes), or oxygen vacancies. This filamentary character makes it challenging to attain extreme downscaling towards the nanometric scale.In this thesis, a particular class of materials - used in the field of energy storage - is studied. The aim is to investigate the origin of the resistance switching processes observed in LixCoO2 films. We first characterize the structural and electrical properties of such films, as well as the electrical behaviors of the devices elaborated therefrom. We then investigate the electrochemical mechanisms which are at the origin of resistive switching, in the micrometric electrode/film/electrode configuration. We try to determine the validity of a formerly proposed mechanism which was however not yet demonstrated. Furthermore, we study the experimental switching kinetics of devices, and propose a numerical model to explain the results observed. Finally, we examine the potential applicability of LixCoO2-based devices to Re-RAM memories through the study of their performances in terms of endurance (i.e. maximum number of write/erase cycles) and retention. Specifically, the influence of several parameters (such as voltage pulses, chemical nature of the electrodes, temperature etc.) on these performances is investigated.
|
2 |
Claquage Electrique et Optique d'Allotropes du Carbone : Mécanismes et Applications pour le Stockage de Données / Optical and Electrical Breakdown of Carbon Allotropes : Mechanisms and Applications for Data StorageLoisel, Loïc 13 April 2016 (has links)
Aujourd’hui, les applications de stockage de données utilisent principalement deux types de matériaux : les chalcogénures pour le stockage optique (e.g. Blu-Ray) et le silicium pour le stockage électronique (e.g. mémoires Flash). Malgré le fait qu’ils se soient avérés les plus efficaces pour des applications répandues, ces matériaux ont des limitations. Récemment, avec la montée en puissance du graphene, les allotropes du carbone ont été étudiés à la fois pour leurs propriétés intrinsèques et pour des applications ; ils ont des propriétés électroniques, thermiques et mécaniques très intéressantes qui peuvent rendre ces matériaux plus efficaces que les chalcogénures ou le silicium pour certaines applications. Dans cette thèse, nous étudions la faisabilité et le potentiel du carbone comme matériau pour le stockage de données.Nous nous concentrons d’abord sur le développement de stockage optique. Nous découvrons que les lasers continus et pulsés peuvent être utilisés pour induire des changements de phase réversibles dans des couches minces de carbone, confirmant la possibilité d’utiliser le carbone comme un matériau pour le stockage optique. De plus, nous découvrons plusieurs nouveaux phénomènes, que nous expliquons en utilisant des techniques de caractérisation avancées et de la modélisation par ordinateur de la propagation thermique dans le carbone.Ensuite, nous nous concentrons sur le stockage de données électronique en développant des mémoires à base de graphene qui peuvent être dans deux états de résistance bien séparés pour un grand nombre de cycles. Pour évaluer le potentiel de cette technologie, on caractérise le mécanisme de changement de résistance et on développe un modèle électromécanique qui permet de prédire les meilleures performances atteignables : ces mémoires ont le potentiel de commuter bien plus rapidement que les mémoires Flash tout en étant non-volatiles. / Today, data storage applications rely mainly on two types of materials: chalcogenides for optical storage (e.g. Blu-Ray) and silicon for electronic storage (e.g. Flash memory). While these materials have proven to be the most efficient for widespread applications, both have limitations. Recently, with the rise of graphene, carbon allotropes have been studied both for their intrinsic properties and for applications; graphene and other carbon allotropes have very interesting electronic, thermal and mechanical properties that can make these materials more efficient than either chalcogenides or silicon for certain applications. In this thesis, we study the feasibility and potential of the usage of carbon as a data storage material.Firstly, we focus on developing optical data storage. It is found that both continuous-wave and pulsed lasers can be used to induce reversible phase changes in carbon thin films, thus opening the way toward carbon-based data storage. Along the way, several phenomena are discovered, shown and explained by using advanced characterization techniques and thermal modelling.Secondly, we focus on electronic data storage by developing graphene-based memories that are found to switch reliably between two well-separated resistance states for a large number of cycles. To assess the potential of this new technology, we characterize the switching mechanism and develop an electro-mechanical model enabling to predict the best performances attainable: these memories would potentially be much faster than Flash memories while playing the same role (non-volatile storage).
|
Page generated in 0.1341 seconds