• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 102
  • 75
  • Tagged with
  • 295
  • 275
  • 274
  • 48
  • 19
  • 13
  • 11
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Développement d'un système de contrôle de qualité pour les lopins d'aluminium semi-solide[s] obtenus avec le procédé SEED

Blanchette, Hugues January 2006 (has links) (PDF)
Les alliages d'aluminium sont de plus en plus utilisés dans le monde du transport. Pour répondre à cette demande, les pièces moulées doivent respecter de hauts critères de performances. Ainsi, de nouvelles méthodes de moulage sont développées parce que les procédés traditionnels de moulage ne peuvent satisfaire ces nouvelles exigences. Une technique privilégiée de ces nouvelles technologies est le moulage des alliages semi-solides. Ce type de procédé implique l'utilisation de métal en cours de solidification impliquant la présence de particules de phase solide incluses dans la phase liquide. Le procédé SEED est l'un de ces procédés qui a comme avantage de procurer une grande intégrité aux pièces moulées augmentant ainsi les propriétés mécaniques des pièces. Le lopin semi-solide produit par le procédé SEED se doit de satisfaire des critères de qualité afin de mouler une pièce qui rencontre les spécifications désirées. Ce projet a donc pour mission de déterminer la faisabilité d'une méthodologie pour évaluer la conformité d'un lopin d'alliage d'aluminium semi-solide avant son injection dans le moule et d'établir des corrélations entre les mesures, la morphologie des grains et le pourcentage de la fraction solide du lopin semi-solide. Suite aux travaux réalisés par le CTA et Alcan avant le début de ce projet, les paramètres du procédé produisant des lopins d'aluminium A356 conformes ont été identifiés. En se basant sur ces paramètres, quatre signatures ont été déterminées pour caractériser les lopins considérés conformes. Ces mesures sont la base du système de contrôle de la qualité. Elles se divisent en deux volets. L'un est le volet de mesures non destructives qui comporte l'évolution temporelle de la température à deux endroits sur la surface du creuset et l'évolution temporelle de la masse d'aluminium drainée pendant l'étape de drainage du procédé SEED. L'autre est le volet de mesures destructives qui est l'évolution de la force appliquée pour la coupe longitudinale du lopin en fonction de la position de l'accessoire de coupe. Ces signatures ont été bornées par un intervalle de confiance à 95% déterminé à l'aide du test de Student. Suite à la caractérisation des lopins conformes, les paramètres du procédé SEED ont été perturbés intentionnellement. Le but de provoquer ces variations était de déterminer si les signatures sortaient ou demeuraient dans l'intervalle de confiance des lopins conformes. Également, une analyse métallographique était effectuée pour déterminer si les perturbations engendrées au procédé produisaient une microstructure différente des lopins conformes. Selon les résultats obtenus, il est possible de développer un système de contrôle de qualité pour la production de lopins d'alliage d'aluminium A356 avec le procédé SEED.
142

Effects of grain refining and modification on the microstructural evolution of semi-solid 356 alloy = Effets de l'affinage des grains et de la modification sur l'évolution microstructurale de l'alliage 356 semi-solide

Nafisi, Shahrooz January 2006 (has links) (PDF)
Le traitement à l'état semi-solide des métaux (SSM) gagne du terrain en tant qu'alternative efficace aux procédés traditionnels de fabrication que sont la coulée et le forgeage. Ce développement tire profit des procédés de mise en forme liquide et solide. En l'absence d'effort de cisaillement, la masse semi-solide est semblable à un solide, autoporteur, alors qu'avec l'application d'effort de cisaillement, la viscosité est sensiblement réduite et le matériau coule comme un liquide; thixotrope-« caractéristique double où la billette possède des caractéristiques du solide, mais coule comme un liquide sous l'effort de cisaillement ». Pour ce qui est du traitement SSM des alliages Al-Si, il existe deux caractéristiques des microstructures qui influencent les propriétés du produit fini, soit la taille et la morphologie de la phase a-Al primaire et le mélange eutectique, qui est constitué principalement de silicium. L'objectif de la présente étude était d'étudier les effets de l'inoculation et de la modification, individuellement ou en combinaison, sur l'évolution des microstructures du groupe d'alliages Al-7%Si en portant une attention particulière aux alliages 356 pour deux procédés différents, soit le conventionnel et le « rhéomoulage » suivant le procédure brevetée de l'Alcan, la Swirled Enthalpy Equilibration Device, soit la technologie SEED. Un alliage binaire et deux alliages commerciaux A17%Si ont été utilisés tout au long du plan de recherche. Après la préparation du métal liquide, différents alliages mère, selon l'objectif, ont été ajoutés au liquide et l'alliage ainsi préparé a été versé et examiné à l'aide de deux montages différents afin d'obtenir une corrélation et d'identifier les différences entre les procédés conventionnel et SSM. Plusieurs techniques ont été utilisées afin de caractériser le matériau obtenu. Ces techniques incluent l'analyse thermique, la microscopie optique, la métallographie quantitative à l'aide de la technique d'analyse d'images, la microscopie électronique à balayage, l'analyse par microsonde, la cartographie par rayons X et les tests rhéologiques à l'aide d'un appareil de compression à plaques parallèles. En se basant sur le traitement SSM, on propose qu'il soit également essentiel de procéder à un partitionnement de l'intervalle de solidification. Ainsi, l'intervalle de solidification pourrait être divisé en deux intervalles principaux, soit l'intervalle de températures pour la fondation et la croissance des dendrites a-Ai (ATa) et / ou des composés intermétalliques du fer, et l'intervalle de températures pour l'eutectique principal Al-Si et les réactions eutectiques secondaires, incluant la formation de MgiSi et / ou de composés de fer. Dans ce contexte-ci, 3'accent est placé principalement sur l'intervalle de solidification a-Al puisqu'il est d'importance capitale pour la science du traitement SSM. Les résultats d'agents d'affinage du grain ont démontré que, généralement, les agents d'affinage augmentent le pourcentage a-Al en raison du décalage de la courbe de refroidissement vers le haut et, par conséquent, on pourrait obtenir un plus grand intervalle de solidification a-Al. Du point de vue SSM, une plus grande zone pâteuse a- Al donne une plus grande flexibilité pour la production de la pâte semi solide et son contrôle. Toutefois des questions secondaires comme les risques de déchirement à chaud, de formation de porosités et de ségrégation pourraient être considérées. La métallographie quantitative effectuée sur les échantillons préparés à partir de billettes démontre que l'affinage conduit à une augmentation du pourcentage a-Al et, en raison du plus grand nombre de sites de germination efficaces par surface unitaire, la taille des globules diminue. L'amélioration de la sphéricité et la diminution de la taille des globules sont les avantages principaux procurés par l'ajout d'agents d'affinage. Quelques tests rhéologiques ont prouvé que des particules plus petites et plus rondes mènent à une meilleure coulabilité de la pâte semi-solide. Il a été démontré que l'ajout d'un peu de Sr, entre 150-200 ppm, suffit pour changer la morphologie du silicium de floconnée à fibreuse dans les deux procédés. Par modification, l'intervalle de solidification a-Al augmente en raison de la diminution de la température de la réaction eutectique principale et, ce qui est intéressant, en considérant un intervalle de solidification constant, l'intervalle de solidification eutectique diminue. Par contraste avec les échantillons raffinés SEED, par modification, le diamètre moyen des globules augmente, mais le pourcentage plus élevé de sphéricité est l'un des avantages principaux de l'ajout de Sr. Il a été suggéré qu'une diminution de la tension superficielle à l'aide de Sr est la raison principale pour une globularité plus élevée. En diminuant la tension superficielle, la mouillabilité des particules par le liquide restant est améliorée, et ceci pourrait être intensifié par un écoulement plus important autour des particules a-Al, et par conséquent un meilleur façonnage conduit à des particules plus rondes. L'augmentation de l'intervalle de solidification a-Al est plus importante avec le traitement combiné qu'avec les traitements uniques. Ceci est dû au décalage du liquidus vers des valeurs plus élevées du côté des agents d'affinage, en plus de l'avantage additionnel qu'est la diminution de la température de réaction eutectique due à la modification. Dans les billettes SEED, l'efficacité d'affinage des grains est évidente si l'on considère la diminution de la taille des globules et la formation accrue de particules primaires, alors que l'effet de la modification pourrait être détecté sous magnification plus élevée par le changement morphologique des particules de silicium de floconnées à fibreuses. D'ailleurs, des études microstructurales de SSM montrent que l'efficacité des agents d'affinage domine toujours le résultat de modification en augmentant la densité numérique des particules primaires et en diminuant leur diamètre circulaire moyen. Des tests rhéologiques à l'aide d'un appareil de compression à plaques parallèles avec un poids mort constant ont montré que les vitesses de déformation les plus élevées et les plus basses appartenaient aux billettes affinées et aux billettes non traitées,respectivement. Il est prouvé que par l'affinage on obtient des billettes ayant de plus petites particules et une globularité plus importante et qui sont, par conséquent, mieux déformables, alors que le Sr diminue la tension superficielle du liquide et ainsi donne une meilleure déformabilité. Le traitement combiné donne les avantages supplémentaires de particules de plus petites dimensions, plus de globularité et une moindre tension de surface. Un nouveau concept innovateur est présenté pour les mesures de fluidité en utilisant la quantité de liquide obtenue par drainage. Il a été déduit que des agents d'affinage et / ou des agents modifiants peuvent augmenter le pourcentage d'écoulement. Ceci est attribué au point de cohésion des dendrites, PCD, où les agents d'affinage et / ou les agents modifiants retardent le PCD et aussi la formation de canaux plus lisses et plus nombreux à l'intérieur de la structure semi-solide en raison du métal liquide.
143

Effet des imperfections de la coulée sur les propriétés en fatigue des alliages de fonderie aluminium silicium = Effect of casting imperfections on the fatigue properties of aluminum-silicon casting alloys

Ammar, Hany January 2006 (has links) (PDF)
L'énergie est le facteur simple le plus critique faisant face au monde aujourd'hui. L'industrie de l'automobile a fait un pas de géant en avant en réduisant le poids des voitures par le remplacement des produits moulés et malléables en fer avec des produits en aluminium. Les alliages aluminium-silicium de fonderie se retrouvent dans plusieurs applications dans ce secteur, en raison de leur rapport élevé de résistance/poids qui améliore leur performance et l'économie de carburant. Les coulées des alliages d'aluminium dans des moules en sable, die casting, et dans des moules permanents ont une importance critique lors de la construction de moteur, de blocs de moteur, de pistons, de têtes de cylindre, de chemises, de carters, de vilebrequins, de carburateurs, de valves de frein et de nombreuses autres composantes se retrouvant dans la conception d'une voiture. Cinq alliages de fonderie Al-Si, avec différents contenus de silicium s'étendant de 7 à 17%, ont été choisis pour cette étude : les alliages hypoeutectiques LP PM319-F, A356-T6 et C354-T6, et alliages hypereutectiques AE425 et PM390, tous utilisés intensivement dans des applications automobile. Le but de ce travail était l'étude de l'effet des défauts de coulée sur les propriétés de fatigue de ces alliages en corrélant la vie en fatigue d'échantillons avec les défauts initiant les craques par fatigue et la caractérisation de ces défauts (c.-à-d., porosités, films d'oxyde, bandes de glissement, etc.), dans le but de comprendre leur rôle critique sur la vie en fatigue. La porosité a été étudiée en terme de taille de pore sur la surface de rupture d'échantillon et sa localisation, c.-à-d. près de la surface ou à l'intérieur de la pièce. L'effet de la pression isostatique chaude (HIPping) sur la vie en fatigue de l'alliage C354-T6 a été également étudié, et le comportement des échantillons non soumis au HIP et ceux soumis au HIP a été a comparé. Les surfaces de rupture de 157 échantillons de fatigue ont été examinées en utilisant un microscope électronique à balayage (technique MEB) pour identifier l'emplacement du déclenchement des fissures par fatigue, complétée par un analyseur d'image pour les mesures quantitatives des défauts amorçant la fissure par fatigue. Les caractéristiques microstructurales (espacements secondaires des bras de dendrite, caractéristiques des particules eutectiques de silicium, taille des grains et phases intermétalliques) ont été examinées en utilisant des techniques d'analyse d'image et de microanalyse grâce à la microsonde d'électronique (EPMA) pour comprendre le comportement en fatigue. Les résultats prouvent que la porosité surfacique est le défaut de coulée le plus important affectant la vie en fatigue, puisqu'elle agit en tant qu'emplacement le plus favorable pour le déclenchement de craque par fatigue: parmi les échantillons examinés, 82% ont rompus sous l'effet de la porosité surfacique agissant en tant qu'emplacement de déclenchement de fissure par fatigue. Par ailleurs, on peut constater que la durée de vie en fatigue des échantillons diminue à mesure que la taille des pores en surface augmente et vice versa. En l'absence de porosités en surface, d'autres défauts de coulée tels que des films d'oxyde près de la surface peuvent être responsables du déclenchement de craque par fatigue : 3% de tous les échantillons examinés ont rompus en raison de la présence de tels films d'oxyde. En l'absence de porosités et de films d'oxyde, les bandes de glissement peuvent agir en tant qu'emplacement principal de déclenchement de craque; dans ce cas, on observe que, pour 3% de tous les échantillons examinés, la fracture est causée par des bandes de glissement. L'initiation de craque par fatigue commence toujours à partir de la surface libre de l'échantillon quelque soit l'emplacement de l'amorce de la fissure (porosités, films d'oxyde, bandes de glissement), soit à l'endroit où l'effort maximum appliqué est observé; le niveau de contrainte diminue de la surface vers le centre de l'échantillon (intérieur du spécimen), ce qui est favorable pour la propagation de craque par fatigue. Ainsi, il est impossible qu'une fissure se propage de l'intérieur de l'échantillon vers la surface libre, c'est-à-dire contre le gradient de contraintes. La localisation de la porosité (c.-à-d. près du bord ou à l'intérieur de l'échantillon) influence également le comportement en fatigue. On constate que, bien que les échantillons non rompus (fin de bande) contiennent des porosités, l'occurrence de cette porosité à l'intérieur des échantillons a beaucoup moins d'influence sur le déclenchement de craques que si la porosité était située au bord de la surface de l'échantillon, comme c'est le cas pour les échantillons rompus. La technique de SEM par laquelle les mesures de porosité ont été effectuées, peut être appliquée avec une grande exactitude pour des mesures des pores simples responsables du déclenchement de fissure par fatigue. Cependant quand l'espace de déclenchement de fissures contient des pores multiples (comme dans le cas de l'alliage de LP PM319-F) ou une structure poreuse spongieuse (comme dans le cas d'alliage AE425), les mesures de SEM ne sont pas assez proportionnées pour déterminer l'emplacement exact du déclenchement des craques par fatigue. Dans ces cas-ci, les mesures devraient être effectuées en utilisant la microscopie optique sur une section longitudinale du spécimen rompu pour fournir une plus grande exactitude des résultats. Cependant, c'est un processus long. La pression isostatique chaude (HIPping) permet d'améliorer la résistance en fatigue de l'alliage C354-T6 en réduisant ou en éliminant la porosité surfacique, et de ce fait la vie en fatigue augmente. En l'absence de la porosité surfacique, d'autres emplacements de déclenchement de fissures tels que des films d'oxyde et des bandes de glissement deviennent opératifs. Les facteurs microstructuraux tels que les caractéristiques de particules de silicium eutectique (espacement secondaire des bras de dendrite, phases intermétalliques et taille des grains) ont une influence directe sur la durée de vie en fatigue et affectent fortement la propagation des fissures. Pour les alliages hypereutectiques, les particules primaires de silicium contribuent au comportement en fatigue en accélérant la propagation des fissures par la décohésion et la fissuration de ces particules sous chargement cyclique.
144

Effets de l'augmentation de la teneur en titane sur l'affinage des grains de l'alliage A356.2

Gagné, Stéphane January 2005 (has links) (PDF)
Comme les autres métaux, l'aluminium est rarement utilisé à l'état pur. Différents éléments sont additionnés à l'aluminium afin de modifier ou améliorer les propriétés mécaniques. Ainsi, environ 85 à 90 % des pièces produites avec ce métal sont constituées d'alliages aluminium-silicium. Ces alliages offrent une excellente coulabilité et peuvent être usinés et soudés. En plus du silicium, il y a d'autres éléments qui peuvent être alliés à l'aluminium. Un de ceux-ci est le titane. La présence de cet élément a des conséquences sur la solidification, la microstructure (affinage des grains, etc.) et les propriétés mécaniques. Le but de ce travail est d'étudier l'affinage des grains de l'alliage A356.2 en présence de titane de même que les différents effets de la présence ou de l'augmentation de la concentration de cet élément dans l'alliage. Comme pour la plupart des éléments d'alliage, le titane affine (réduit) la taille des grains. La réduction de la taille des grains est toutefois plus prononcée avec cet élément. En général, la réduction de la taille des grains est inversement proportionnelle à la concentration en titane. À partir d'une certaine concentration, la taille des grains devient minimale. De plus, en présence de titane, il y a formation de plaquettes de Ti(Al,Si)3. Ces plaquettes dissolvent une petite quantité de silicium. De plus, la surchauffe peut changer la morphologie de ces plaquettes. Lorsque la concentration est faible, la surchauffe augmente la taille des grains. Il est possible d'observer par analyse thermique certains phénomènes qui résultent de la présence de titane. Ainsi, l'accroissement de la concentration en titane entraîne une hausse de la température du début de la solidification de l'aluminium. La hausse exacte dépend de la concentration. Le titane affecte aussi d'autres paramètres de la courbe de solidification (AT, etc.).
145

Effets des paramètres métallurgiques sur la microstructure, la macrostructure et la performance des alliages 319, 356 et 413

Gagnon, Dominique January 2005 (has links) (PDF)
Les alliages d'aluminium-silicium sont de plus en plus utilisés de nos jours dans le domaine automobile. Ils permettent d'alléger le poids des automobiles et diminuer ainsi la consommation d'essence. Nous avons étudié, dans ce projet, trois alliages d'aluminium soit sont le 319, le 356 et le 413. Nous avons fait varier différents paramètres métallurgiques pour chaque alliage. Les paramètres variés sont le dégazage, l'ajout de strontium, l'ajout de T1B2 et la quantité d'hydrogène. Ainsi, 9 conditions ont été créées pour chaque alliage. En plus de varier les paramètres métallurgiques, nous avons également effectué des traitements thermiques sur les alliages. Les échantillons ont tous subi une mise en solution de huit heures à 495°C pour les alliages 319 et 413 et à 540°C pour l'alliage 356. Par la suite, une trempe a été effectuée dans un bac rempli d'eau chaude (60°C). Finalement, on a effectué le vieillissent d'une durée de cinq heures à 155°C, 180°C, 200°C, 220°C et 240°C. Nous avons également gardé des échantillons dits « tel que coulée » qui n'ont pas subi de traitements thermiques. Différents examens ont été faits sur les échantillons pour mesurer leur microstructure et leur macrostructure mais également les propriétés mécaniques. La grosseur des grains, l'espace interdendritique et la morphologie des particules de silicium et des pores ont été mesurés pour évaluer la microstructure et la macrostructure des alliages. Pour les propriétés mécaniques, la dureté et la résistance à l'impact ont été mesurées. Des images ont également été prises pour évaluer le mode de propagation de la fissure (fractographie) pour les échantillons soumis au test de résistance à l'impact. Nous avons pu identifier un nouveau phénomène agissant sur la morphologie des particules de silicium lors de la mise en solution. En temps normal, les particules de silicium aciculaire se fragmentent lors de la mise en solution ce qui diminue la surface totale des particules de silicium. Dans notre cas, il y a bel et bien une fragmentation mais il y a aussi une dissolution des petites particules de silicium qui diffusent vers les particules aciculaires de silicium plus grandes. Comme la cinétique de dissolution/diffusion des particules silicium est supérieure à celle de la fragmentation, il y a une augmentation de la surface moyenne (observé pour 14 échantillons sur 18). Les essais de résistance à l'impact ont permis de trouver que les pores présents dans les échantillons jusqu'à un pourcentage surfacique de 2,59% n'influencent pas la valeur de l'énergie absorbée.
146

L'effet du taux de refroidissement, modification au strontium, traitement thermique du liquide et la mise en solution sur les caractéristiques des particules du silicium eutectique et les propriétés de traction de l'alliage A356

Chen, Hu January 2005 (has links) (PDF)
En tant qu'une des familles principales des alliages d'aluminium, les alliages Al-Si offrent une excellente coulabilité, une bonne résistance à la corrosion et des bonnes propriétés physiques et mécaniques. L'alliage A356.2 commercialement populaire, appartenant au système Al-Si-Mg, a d'excellentes caractéristiques de coulée, soudabilité, étanchéité de pression et résistance à la corrosion. L'alliage est généralement soumis à un traitement thermique (traitement T6) pour fournir de diverses combinaisons des propriétés de traction et physiques qui sont attrayantes pour plusieurs d'applications en industrie de l'automobile et de l'aérospatiale telles que des blocs de moteur, des têtes de cylindre et des roues. De tels composants critiques exigent que les pièces coulées présentent des propriétés conformes de résistance et de ductilité dans tout le matériel solidifié. Il est bien connu que la morphologie des particules eutectiques de silicium dans les alliages Al-Si soit un facteur principal qui détermine les propriétés mécaniques de ces alliages. Dans les conditions de tel que coulé, la microstructure d'alliage contient des particules fragiles et aciculaires de silicium sous forme de plaquettes avec des côtés pointus aux extrémités. D'un point de vue mécanique, la présence de telles particules sous forme plaquettes dégradera les propriétés mécaniques parce que des efforts inhérents seront centralisés sur les côtés et les extrémités pointus, ce qui entraîne une rupture rapide. D'autre part, si les particules eutectiques de silicium sont obtenues sous une forme fine et fibreuse (silicium fibreux), une telle morphologie contribue aux meilleures propriétés de traction avec des valeurs légèrement plus élevées de résistance à la traction finale et à des valeurs de ductilité considérablement plus grandes. En plus de la taille et de la forme des particules eutectiques de silicium, la taille de grain et le DAS (espacement de bras de dendrite) sont également importants pour les propriétés de l'alliage. Le DAS est déterminé par le taux de refroidissement. En effet, des taux de refroidissement plus élevés mènent à une taille de grain plus fine et à une plus petite valeur de DAS qui améliorent les propriétés. Tandis qu'un taux de refroidissement élevé peut également produire des particules eutectiques de silicium plus fines, leur morphologie, cependant, demeure la même (c.-à-d. aciculaire). La modification ou le changement de la morphologie de particules de silicium d'une forme aciculaire à une forme fibreuse est habituellement provoquée en ajoutant un modificateur au métal liquide. Pour cet effet, le strontium est généralement utilisé sous forme d'alliage mère d'Al-10%Sr. Le rôle du strontium est d'affecter principalement la nucléation et la croissance de la phase de silicium en développant un habillage efficace d'impureté devant la croissance de silicium présent dans l'alliage solidifié. Par la suite, cet habillage d'impureté produit des particules fines de silicium qui contiennent une forte densité. Les particules fines de silicium peuvent également être produites en utilisant d'autres moyens, par exemple un taux de refroidissement élevé, traitement de mise en solution ou un traitement thermique du liquide. Un taux de refroidissement élevé a comme conséquence un degré élevé de surfusion décalant le point Al-Si eutectique de l'alliage à une plus basse température. Le taux de refroidissement élevé mène à la formation des particules plus fines de silicium comparées à un taux de refroidissement bas. Autres moyens pour obtenir des particules fines de silicium est l'utilisation du traitement thermique du liquide, ou le processus de MTT. Dans ce cas-ci, l'utilisation de basses et de hautes températures pour l'alliage produit une structure fine de silicium. L'effet de modification est réalisé par des noyaux résultant de la dégénération de grands amas d'atomes et quelques solides réfractaires dans la basse température quand l'alliage est chauffé à hautes températures. Dans ce processus aucune addition d'élément n'est exigée. C'est une technique relativement récente qui semble être une alternative prometteuse à la modification au strontium Sr, car elle n'exige aucune addition d'élément, de ce fait ramenant le risque de porosité accrue normalement liée à l'addition du strontium au métal liquide. L'utilisation de la surchauffe du métal liquide s'avère également un moyen pour produire l'amélioration de la structure eutectique de silicium. Dans ce cas-ci, aussi, la température élevée de la fonte aide à la dégénération des amas d'atomes, fournissant plus de noyaux pour la formation de dendrite d?a-Al fournissant un affinage de la microstructure. Dans les alliages d'aluminium traitables thermiquement, les propriétés mécaniques sont augmentées par l'utilisation des traitements thermiques. Ces derniers qui sont appliqués sur les alliages A356 se composent de trois étapes : un traitement thermique de mise en solution (à 540 °C) pendant un temps indiqué, une trempe (dans l'eau chaude), suivie d'un vieillissement artificiel à 155 °C. La partie de traitement de mise en solution du processus affecte directement les particules de silicium et, dépendant d'un temps optimum de traitement, produit des particules sphéroïdisées de silicium. Des temps plus grands de traitement de mise en solution peuvent mener à des particules aciculaires de silicium. Ainsi, n'importe quel facteur qui peut affecter la morphologie des particules eutectiques de silicium aura un effet sur les propriétés mécaniques des alliages Al-Si. Le but du travail actuel est d'étudier de divers moyens d'obtenir une structure eutectique fine de silicium dans l'alliage A356.2 et d'améliorer de ce fait les propriétés mécaniques de celui-ci. Les effets du taux de refroidissement, la modification au Sr, le traitement thermique de mise en solution et le traitement thermique du métal liquide sur les caractéristiques des particules de silicium de l'alliage A356.2 (Al-7%Si-0.4%Mg) ont été étudiés. Les paramètres des particules mesurés étaient la surface moyenne, la longueur moyenne, le rapport de la rondeur et le rapport longueur/largeur en utilisant l'analyse d'image et la microscopie optique. Basé sur les résultats obtenus à partir des caractéristiques microstructurales, des propriétés de traction (la limite ultime, la limite élastique et l'allongement à la rupture) des échantillons choisis ont été examinées au moyen d'une presse INSTRON universelle pour déterminer l'effet de ces facteurs sur les propriétés mécaniques. Les résultats ont prouvé que les alliages qui ont subi une modification au strontium Sr accompagnée d'une surchauffe et qui ont subi le processus de modification MTT fournissent très bien des particules eutectiques fines de silicium, le processus de Sr-MTT donne de meilleurs résultats de modification. La taille et la morphologie des particules eutectiques de silicium sont affectées par le procédé de modification utilisé. Les alliages SrM, SH et SrMTT coulés montrent des particules fibreuses de silicium bien modifiées, tandis que les alliages MTT qui montrent des particules de silicium, bien que raffinées dans une certaine mesure, maintiennent toujours leur morphologie aciculaire. Le taux de refroidissement affecte la dimension particulaire du silicium eutectique puisque un taux de refroidissement plus élevé produit des particules plus fines de silicium. Cependant, dans la marge des taux de refroidissement fournis par les extrémités froides du moule utilisé dans ce travail, le taux de refroidissement n'affecte pas la morphologie des particules de silicium. Pendant le traitement thermique de mise en solution à 540°C, les particules eutectiques de silicium subissent une fragmentation, une sphéroïdisation, et grossissement affectant la morphologie des particules de silicium. Le processus de sphéroïdisation est déterminé par la taille et la morphologie des particules de silicium dans les conditions tels que coulés. Les alliages subissant une modification au Sr, une surchauffe et un processus de SrMTT avec leurs particules de silicium raffinées ont besoin moins de temps de traitement de mise en solution pour le processus de sphéroïdisation que les alliages non modifiés et alliages MTT. Une analyse des essais de traction pour les diverses coulées de l'alliage A356.2 (NM, SRM, MTT SH et SrMTT) dans la condition tel que coulé montre que le taux de refroidissement et le procédé de modification n?ont aucune influence sur la limite élastique. La limite ultime (UTS) peut être améliorée par SrM, SH, et un traitement de SrMTT. Le processus de MTT n'a aucune influence apparente sur l'UTS. Le traitement de SrM et de SrMTT peut considérablement améliorer le pourcentage de l'élongation à la rupture de l'alliage A356. Les processus SH et de MTT montrent aucune amélioration significative dans le pourcentage de l'élongation. Un pourcentage d'allongement plus élevé peut être produit à un taux de refroidissement plus élevé. L'effet du traitement thermique de mise en solution sur les propriétés de traction des diverses coulées de l'alliage A356.2 peut être résumé comme suit. La limite élastique des diverses coulées de l'alliage A356.2 est sensiblement améliorée après le traitement thermique de mise en solution de 8 h dû à la précipitation de Mg2Si. La limite élastique demeure plus ou moins la même avec un accroissement plus ultérieur à un temps de traitement à 80 h. La limite ultime UTS est également considérablement améliorée dans les 8 premières heures du traitement thermique de mise en solution et reste alors au même niveau avec le temps augmentant jusqu'à 80h. L'amélioration est attribuée à la précipitation de Mg2Si, à la dissolution du silicium dans la matrice d'aluminium et au changement de la morphologie de particules de silicium (sphéroïdisation). La ductilité des alliages A356.2 qui ont subi le processus de NM, SH, et MTT peut être améliorée considérablement avec le traitement thermique de mise en solution (par exemple de ~ 6% dans l'alliage non modifié et dans la condition de tel que coulé à ~ 10% après un traitement de mise en solution de 80 heures). Cependant, les alliages qui ont subi le processus SrM et SrMTT ne montrent aucune amélioration remarquable.
147

Effect [sic] des paramètres métallurgiques sur le comportement d'usinage des alliages 356 et 319 (étude de forage et de taraudage)

Tash, Mahmoud January 2005 (has links) (PDF)
La présente étude a été entreprise pour étudier l'effet des paramètres métallurgiques sur la dureté et des caractérisations microstructurales dans les alliages 356 et 319 tels que coulés et soumis à un traitement thermique. Ceci est dans le but d'ajuster ces paramètres pour avoir une dureté appropriée et une fraction volumique des intermétalliques de fer pour l'usage dans les études concernant l'usinabilité de ces alliages. La gamme de la dureté et les fractions volumiques des intermétalliques de fer utilisées dans cette étude est la plus connue des applications commerciales de ces alliages. Des mesures de dureté ont été effectuées sur des spécimens préparés à partir de des alliages 356 et 319 tels coulés soumis à un traitement thermique, en utilisant différentes combinaisons du raffinage de grain, modification au strontium Sr et en ajoutant des éléments alliés. Des traitements de vieillissement ont été effectués à 155°C, 180°C, 200°C et 220°C pour 4 h, suivis du refroidissement à l'air, aussi bien qu'à 180°C et à 220°C pour 2, 4, 6, et 8 h pour déterminer des conditions dans lesquelles la dureté spécifique atteigne 85 et 115. L'addition du magnésium aux alliages 319 contenant le B- et/ou le a-intermétalliques de fer produit une augmentation remarquable de dureté à toutes les températures de vieillissement en conditions non modifiées et modifiées par le strontium. Des additions du magnésium aux alliages 319 avec différentes conditions de traitement thermique pour des alliages 356 et 319 ont été effectuées pour obtenir des niveaux semblables de la dureté pour les deux alliages. Des conditions de 356 et de 319 modifiés au strontium (200-250 ppm) contenant principalement des intermétalliques a-Fe liées à différents niveaux de la dureté (90, 100 et 110 HB) ont été choisies pour l'étude de forage et de taraudage. L'effet du magnésium et de la fraction volumique des intermétalliques a-Fe sur l'usinabilité des alliages 319 soumis à un traitement thermique a été étudié pour deux niveaux de magnésium (0.1 et 0.28%), et deux niveaux de fraction volumique des intermétalliques a-Fe (2 et 5%), respectivement. Les facteurs les plus importants entrepris dans la présente étude qui déterminent l'état du matériel de travail qui peuvent influencer les résultats de l'usinabilité des alliages 356 et 319 sont: ? Chimie et additions (Cu, Mg et Fraction volumique des intermétalliques de a-Fe) 1. Le rôle des intermétalliques du cuivre en usinant les alliages 356 (sans du cuivre vieilli à 180°C/2h) et 319 (avec du cuivre vieilli à 220°C/2h), tous les deux ont le même niveau de la dureté (100 HB). 2. Rôle de l'addition du magnésium à l'alliage 319 à deux niveaux de contenu de magnésium (0.1 et 0.28%) donne le même traitement de vieillissement (220°C/2h) et deux niveaux différents de dureté (90 et 100 HB), les mêmes alliages subis un traitement différent de vieillissement (180°C/2h et 220°C/2h) donnent le même niveau de la dureté (100 HB). 3. L'effet d'augmenter la fraction volumique des intermétalliques a-Fe aux alliages 319 (2 et 5%) et quand le vieillissement est effectué à 220°C/2h et à 180°C/2h rapportent des duretés de l'ordre (90 HB) et (100 HB) respectivement. ? Taux de refroidissement et vitesse de trempe ? Dureté Les différences dans le comportement d'usinage entre les alliages 356 et 319 sont principalement attribuées à la différence dans la dureté de matrice, la chimie d'alliage, les additions d'éléments et le traitement thermique. La dureté de matrice (salutaire) et les abrasif d'alliage (nuisible) semblent être de vraies issues commandant l'usinabilité d'alliage. Le magnésium et le cuivre renforcent la matrice de l'alliage et par conséquent améliorent l'usinabilité de ce dernier. Le magnésium durcit les alliages 356 et 319, mais n'augmente pas l'abrasif puisqu' en petite quantité, il ne contribue pas à la formation des phases dures d'intermétalliques. En conséquence, les alliages contenant du Mg montrent un nombre plus haut de trous forés et tapés. Un contenu plus élevé de magnésium résulte dans une force de découpage plus élevée au même niveau de la dureté. Ceci peut être expliqué en notant que la fraction volumique des intermétalliques de magnésium ou des précipités plus élevés qui peut être formée dans la matrice d'alliage en conditions des alliages 319 contenant du Mg élevé (0.28%) comparées au bas contenu du Mg (0.1%). Les alliages 319 contenant un niveau bas en Mg (0.1%) présentent une vie supérieure d'outil, et ce deux fois plus que des alliages 356 (0.3% Mg) et une fois et demi que des alliages 319 contenant Mg (0.28%). En comparant un système primaire d'alliage de bâti à l'autre (356 contre 319 ou 319 (0.1 %Mg) contre 319 (0.28%Mg), par exemple), l'usinabilité des alliages 319 est plus haut que celle des alliages 356 et l'usinabilité des alliages 319 contenant un niveau bas en Mg (0.1%) sont plus haut que des alliages 319 contenant Mg (0.28%). Un alliage avec un contenu bas en cuivre comme l'alliage 356 montre une force de découpage plus élevée comparée à celle des alliages 319 au même niveau de la dureté. Ceci peut être expliqué par l'amélioration de la homogénéité de la dureté de matrice d'alliage 319 sur la base de l'effet des intermétalliques du Cu et du Mg combinés, tandis que le durcissement se produit par la précipitation coopérative des particules de phase de Al2Cu et de Mg2Si comparées seulement à la précipitation de Mg2Si dans le cas des alliages 356. La teneur de cuivre des alliages 319 tendrait à durcir l'alliage et par conséquent améliore leur usinabilité. En conséquence, les alliages 319 contenant Mg montrent une meilleure usinabilité comparée avec les alliages 356. La morphologie des intermétalliques de fer peut affecter les résultats de force de découpage quand le vieillissement a été effectué pour deux heures à 180 °C et pas à 220 °C. On l'a observé que la fraction volumique des intermétalliques a-Fe peut affecter la force et le moment de découpage quand le vieillissement a été effectué à 180° C/2h plutôt qu'à 220°C/2h. Pendant le temps de solidification dans la gamme de 25 à 45 secondes, il semble que la force et le moment de découpage sont légèrement influencés par le taux de refroidissement et la vitesse de trempe dans les états T6 et T7. Les traitements thermiques qui augmentent la dureté réduisent (heat build-up (BUE)) sur l'outil de coupe. La dureté affecte l'usinabilité des alliages 319 du fait que l'usinabilité s'améliore avec l'augmentation de dureté. On l'observe que la force et le moment de découpage augmentent avec la dureté tandis que (heat build-up (BUE)) diminue. Dans le tapement, on l'a observé que les outils de l'acier à coupe rapide réagissent considérablement plus avec la sensibilité à la dureté. L'outil (HSS-E) est cassé quand le changement de taper seulement 230 trous dans tels que coulés états (88 HB) aux 230 autres trous dans les conditions T6 (110 HB). On a observé la formation trompeuse des morceaux ou chip sur les conditions des alliages 356 et 319 (Ml et M3). Un critère important d'évaluation pendant le forage et le tapement est la qualité du trou. L'essai (Go-No-Go) est pris comme évaluation caractéristique pour l'exactitude de trou. Le diamètre de référence de (6.5024-6.5278 mm) et (7.02056-7.15518 mm) est employé pour forer et taper respectivement. Tous les résultats des essais (Go-No-Go) sont corrects. On observe des morceaux discontinus pendant l'usinage des alliages 356 et 319. À l'heure actuelle de l'effort critique, les processus durcissants excédent les processus ramollissants et une ligne principale fente se développe qui résulte en cassant le morceau, et de ce fait au développement d'un morceau complètement cassé. Plein, demi de tour et morceaux hélicoïdaux sont produits au début d'une opération de découpage quand l'outil est nouveau (processus de cisaillement). Pendant que l'outil commence usage, le morceau devient graduellement bien déformé, et le cisaillement et la déformation se produisent. Dans la contribution à la connaissance originale, les corrélations expérimentales qui relient les additions d'éléments et le traitement thermique avec la dureté ont été trouvées des résultats expérimentaux. De ces corrélations, on l'a noté que la dureté produite pour des alliages 319 augmente avec le magnésium et les fractions volumiques des intermétalliques de a-Fe et diminue comme la modification par le strontium et les paramètres de traitement de vieillissement (la température de vieillissement et temps de vieillissement). Dans des autres corrélations qui relient les additions d'éléments et le traitement thermique avec la force et le moment de découpage de forage aussi bien que (heat build-up (BUE)), on l'a observé que tous les deux la force et moment de découpage produits pendant de forage augmentent avec le magnésium et les fractions volumiques des intermétalliques de a-Fe et diminuent avec la température de vieillissement. Cependant, (heat build-up (BUE)) produite pendant le forage diminue avec l'augmentation de magnésium et les fractions volumiques des intermétalliques de a-Fe et augmente avec la température de vieillissement.
148

Évaluation de la technique LiMCA II pour la mesure d'inclusions dans l'aluminium pur et l'alliage binaire Al-6%Si : rôle de la température de coulée

Shirandasht, Jamshid January 2005 (has links) (PDF)
Les alliages aluminium-silicium (Al-Si) constituent la majorité de moulages en aluminium, ceci est du à la fluidité élevée fournie par la présence d'un volume relativement grand de la phase eutectique du silicium. La demande des pièces coulées en aluminium de plus haute qualité, en particulier dans les industries de l'automobile et de l'aérospatiale, a concentré beaucoup d'attention sur la qualité de l'aluminium fondu. La propreté du métal, une caractéristique importante qui affecte la qualité et la performance du produit final, est déterminée par la quantité des éléments de trace, de gaz, d'oxydes, d'impuretés et d'inclusions actuelles dans le métal liquide. Les inclusions dans les alliages coulés d'aluminium ont été un problème important dans le processus et contrôle de qualité. Le contrôle de la propreté du métal dans les alliages Al-Si fondus exige des moyens de surveiller et réduire au minimum la présence des impuretés, des inclusions et des gaz. Beaucoup de techniques ont été présentées pour mesurer le contenu d'inclusion dans les fontes en aluminium. Parmi elles, la technique de LiMCA (analyseur liquide de propreté en métal) est une technique non destructive qui est capable d'effectuer des mesures in situ des concentrations d'inclusion et de les distinguer selon la dimension particulaire. La présente étude a été entreprise pour étudier les possibilités de la technique de LiMCA pour mesurer différents types d'inclusions en alliages purs commerciaux d'aluminium et d'Al-6%Si, en utilisant deux températures différentes (680 et 750°C). Le but principal de l'étude était d'évaluer la technique dans le cas des alliages de fonderie, où les niveaux d'inclusion sont considérablement plus élevés que ceux trouvés dans les alliages d'aluminium corroyés pour lesquels la technique de LiMCA a été généralement employée jusqu'à maintenant. Les types d'inclusions étudiés qui sont AL2O3, AL4C3, MgO, CaO, TiB2 et TiAl3, représentant des inclusions typiquement trouvées dans les alliages d'aluminium de fonderie. Les additions d'inclusion ont été faites en utilisant la poudre, l'alliage mère, métal pur et de matrice composite de métaux. Dans le cas des inclusions de poudre, les inclusions ont été injectées dans la fonte d'alliage en utilisant une technique d'injection de poudre pour préparer un contenu d'inclusions dans les lingots qui seront plus tard employés pour l'addition d'inclusion aux fontes fraîches d'alliage pour effectuer les essais de LiMCA. Les données de LiMCA ont été obtenues sous forme de parcelles qui ont fourni toute la concentration en nombre et en volume de concentration des inclusions, en fonction du temps et de la dimension particulaire. L'examen microstructural des échantillons solidifiés obtenus à partir du tube de sonde de LiMCA utilisé pour les mesures et à partir des prélèvements de la fonte a été également effectué, en utilisant la microscopie et la microanalyse optique de sonde d'électron (EPMA). Une analyse des données de LiMCA obtenues et des micro structures correspondantes a montré qu'après les procédures semblables d'addition d'inclusion, le nombre maximum des inclusions dans les fontes en aluminium pures commerciales à 750°C que est donné par des inclusions d'A^Os, suivies des inclusions d'Al4C3, alors que les inclusions de CaO montrent les plus basses concentrations. La plupart des inclusions sont détectées dans la gamme de grandeur de 20 à 25 um. Dans le cas des inclusions de MgO, les plus grandes additions du MgO augmentent la distribution d'inclusion dans les gammes plus étendues de dimension particulaire, montrant la tendance des inclusions de MgO à l'accumulé. Les natures semblables des courbes pour des inclusions de MgO obtenues à partir des essais effectués à la température de 680°C indiquent la répétitivité des prélèvements de LiMCA pris du même métal liquide. La comparaison du nombre total et la moyenne des inclusions TiB2 montrent leur tendance de disperser dans la fonte plutôt qu'accumulé. Même avec une plus grande addition des inclusions TIB2 à la fonte, la technique de LiMCA peut correctement détecter l'augmentation correspondante de la concentration dans la gamme de dimension particulaire de 20 à 25 jam. Les concentrations en volume pour les inclusions TiAl3 dans les fontes pures d'Al à 680 °C restent hautes pour toutes les gammes de dimension particulaire, tandis que pour d'autres inclusions, les dimensions particulaires plus élevées montrent de bas volumes. Dans les alliages Al-6%Si coulés à 750 °C, il y a une première période de 15-20 minutes avant que les lectures d'inclusion commencent à être détectées correctement par le LiMCA. Les inclusions AL2O3 et TiB2 montrent les concentrations les plus élevées dans les gammes inférieures de dimension particulaire, où TiB2 montre cette tendance pour presque toute la gamme de dimension particulaire. Les inclusions Al4C3 montrent des concentrations près de celles d'Al2O3, alors que les CaO et les MgO montrent les plus basses concentrations. Les effets de l'agglomération et de la sédimentation de particules sont également reflétés par les caractéristiques de distribution de dimension particulaire. Bien que les inclusions de CaO montrent les plus basses concentrations dues à leur basse mouillabilité, leur présence est encore différenciée par le LiMCA en ce qui concerne les niveaux bas d'inclusion d'alliage (sans aucune addition). Les inclusions CaO, MgO et TiB2 montrent des concentrations en volume élevées. Le LiMCA est sensible à la taille et à la concentration d'inclusion. Sa sensibilité augmente pendant que la température de fonte diminue. Les concentrations plus élevées d'inclusion de LiMCA II à des températures plus basses de 680 °C pour tous les types d'inclusion ont été étudié. Cet effet est le plus prononcé pour des inclusions de la poudre TiB2 et AL4C3. Les types d'inclusion suivants montrent les concentrations les plus élevées : TiB2 (poudre) > MgO + Mg > TiB2 (alliage mère) >Al4C3 (poudre) dans cet ordre. Les inclusions de TiB2 (poudre) et de MgO (métal) sont associées à l'excédent de volumes élevés de toutes les gammes de dimension particulaire, indiquant la présence des inclusions de toutes les tailles dans la fonte et des effets délétères relatifs des inclusions. Les niveaux beaucoup plus élevés d'inclusion de MgO obtenus avec l'addition du métal de magnésium (plus la surchauffe de la fonte) montre que cela l'addition directe du métal est une source bien meilleure de ces inclusions qu'en utilisant la poudre de MgO elle-même (20.000 contre, ppb 5.000). Ceci démontre la sensibilité et la fiabilité de la technique de LiMCA à la présence et la source des inclusions supplémentaires à la fonte. En ce qui concerne des additions d'inclusion en utilisant des alliages mères, les nombres de la concentration de TiB2 sont beaucoup plus hauts que ceux de TiAl3. Cependant, dans les deux cas, la plupart des inclusions sont trouvées dans la gamme de dimension particulaire allant de 20 à 25 um. Du point de vue de fournir des noyaux hétérogènes à la fonte par l'utilisation des alliages mères de raffinage de grain, les mesures de LiMCA prouvent clairement que Al-5%Ti-l%B est beaucoup plus efficace que l'alliage Al-10%Ti. Dans la présente étude, l'évidence microstructurale de l'accumulation d'une vaste quantité d'inclusions de TiB2 comme capturée par le tube de sonde de LiMCA prouve que LiMCA est la seule technique qui peut capturer de tels agglomérés en ligne, sans n'importe quel problème, car d'autres techniques telles que le PoDFA et le Prefil ne peuvent pas mesurer de tels agglomérés TiB2 sans leurs systèmes de filtre obtenant obstrués et interrompant les mesures. C'est une conclusion significative, et démontre un aspect très important de la technique de LiMCA, en particulier en raison du fait que des alliages mères de type d'Al-Ti-B sont régulièrement utilisés pour l'affinage des grains.
149

Paramètres métallurgiques contrôlant l'évolution microstructurale dans les alliages de fonderie Al-Si-Mg et Al-Si-Cu

Liu, Li January 2004 (has links) (PDF)
Avec leurs caractéristiques de basse masse volumique, de bas point de fusion, d'excellente coulabilité et de bonne résistance à la corrosion, les alliages aluminium-silicium (Al-Si) sont intensivement utilisés dans les applications d'automobiles. Les pièces produites à partir de ces alliages s'étendent dans plusieurs utilisations, à savoir, des blocs de moteur, des culasses et des roues. Deux des alliages commerciaux les plus populaires utilisés dans de telles applications sont les alliages de type A3 5 6 et 319, appartenant respectivement aux systèmes Al-Si-Mg et Al-Si-Cu. La qualité et les propriétés des pièces coulées sont déterminées par la qualité de leur microstructure, commandée par de divers paramètres tels que l'espace interdendritique (DAS, contrôlé lui même par le taux de solidification), le degré de modification de silicium eutectique et le degré d'affinage de grain, et la quantité de microporosités, d'intermétalliques et d'inclusions observées dans la microstructure. Parmi ces derniers facteurs, le taux de solidification est le plus important, car il affecte directement ou indirectement presque tous les autres paramètres microstructuraux. La modification de la morphologie du silicium eutectique de la forme aciculaire à une forme fibreuse est habituellement effectuée par l'addition du strontium (Sr) pour améliorer la ductilité de l'alliage. Les intermétalliques qui sont présents généralement en ces alliages sont les intermétalliques du fer B-Al5FeSi et a-Al5(Fe, Mn)3Si2, plaquettes, Mg2Si et, dans le cas des alliages 319, les intermétalliques de cuivre, CuAl2. En raison de leur fragilité, les intermétalliques de fer dont la nature est sous forme de plaquettes peuvent être tout à fait délétères aux propriétés de l'alliage, de même la présence de la porosité, en particulier en termes de qualité extérieure et solidité. Le but du travail actuel est d'étudier les paramètres métallurgiques contrôlant l'évolution microstructurale dans les alliages de type Al-Si-Mg et Al-Si-Cu, à l'aide de la détermination des caractéristiques microstructurales des alliages de type A356 et 319 directionnellement solidifiés en fonction de la teneur du fer, de l'addition du Sr (250 ppm) et de taux de refroidissement. Les teneurs en fer choisies varient de 0.12 (% en poids) à 0.8 (% en poids), et couvrent la gamme des niveaux de Fe trouvée dans les alliages commerciaux. L'utilisation d'un moule d'extrémité froide a fourni différents taux de refroidissement le long de la taille de la même pièce coulée, les valeurs de DAS qui ont changé de ~ 23 à 85 um, correspondant aux niveaux de 5, 10, 30, 50 et 100 mm au-dessus de l'extrémité froide. Les effets de ces variables sur la précipitation de la phase de B-Al5FeSi, les caractéristiques de la structure dendritique a-Al, la modification du silicium eutectique et la formation de porosité ont été examinés en détail. Diverses techniques ont été employées pour la caractérisation microstructurale et l'identification des phases, y compris le microscope électronique optique et de balayage, la microsonde électronique a couplés avec des rayons X d'énergie dispersive (EDX), la spectroscopie de longueur d'onde (WDS), ainsi que l'analyse thermique. Un analyseur d'image a été utilisé en même temps que le microscope optique pour la quantification. Une analyse des résultats obtenus prouve que la quantité de fer présente dans l'alliage affecte la taille des plaquettes de B-Al5FeSi et de leur distribution, en particulier avec un faible taux de refroidissement. L'addition du strontium mène à la fragmentation de ces (3-plaquettes co-eutectiques ou post-eutectiques. Cet effet diminue avec l'augmentation de la concentration en fer, et davantage d'addition de strontium mène à la précipitation des particules de type Al2Si2Sr, au lieu de fragmenter les plaquettes de fer. On observe un minimum de porosité dans les alliages dont le pourcentage en poids de fer est de ~ 0.4 (cas de l'alliage 319) et de ~ 0.4 ou 0.6 (cas de l'alliage 356) dû aux améliorations de la fluidité d'alliage. Avec l'augmentation du contenu de fer au dessus de ces niveaux, la porosité est également augmentée, en raison de l'augmentation de la taille des plaquettes de fer et de l'obstacle accru dans le métal fondu. La porosité observée à n'importe quel niveau donné de fer est la résultante de la concurrence entre ces deux facteurs, c.-à-d., fluidité et taille de B-plaquettes, et dépend de la perméabilité des régions interdendritiques. Bien que les branches de la phase B-Al5FeSi mène à la formation de porosité, ces mêmes plaquettes, d'autre part, limitent également la croissance des pores. En général, le pourcentage de porosité, l'aire maximum et la longueur maximale de pore augmentent avec l'augmentation des longueurs moyennes des plaquettes du B-Al5FeSi dans les alliages 356 et 319. Dans les alliages modifiés par le strontium, la formation de porosité est fréquemment associée aux oxydes de strontium (des particules ou films), aussi bien qu'aux plaquettes de B-Al5FeSi. Ces oxydes (avec une composition stoechiométrique proche de Al2SrO3) sont formés pendant la coulée du métal liquide, et ce est dû à l'affinité élevée de l'oxygène du strontium, et sont difficiles à s'enlever par l'intermédiaire d'un dégazage. La morphologie du pore (ronde ou irrégulière) est déterminée par la forme de l'oxyde, à savoir, particules ou films épais très bien dispersés. Des pores ronds sont également observés entourés par des régions eutectiques d'Al-Si. Les films d'oxyde d'aluminium emprisonnés dans le métal fondu mènent à la formation des pores plus bruts et plus profonds que ceux formés d'oxydes de strontium. Ces pores peuvent également être liés l'un avec l'autre, et sont caractérisés par la présence du métal solidifié emprisonné dans les films d'oxyde d'aluminium, près de la périphérie. La forme de ces pores est commandée par la quantité de gaz emprisonné avec les pores pendant la solidification. Les oxydes d'aluminium et de strontium agissent également en tant que des emplacements ou sites favorables pour la précipitation d'autres microconstituants, comme par exemple, la phase de B-Al5FeSi. Pour des mêmes concentrations en fer et des conditions de taux de refroidissement, les alliages de type 319 montrent des pores de plus grandes tailles que ceux dans les alliages de types 356, et ce est dû à leur plus long temps de solidification. En ce qui concerne la dimension particulaire de silicium, le temps de solidification est aussi important que l'addition de strontium dans les alliages contenant un grand nombre d'éléments d'alliage (à savoir, 319 contre alliage 356). La modification de strontium s'avère plus efficace dans l'alliage 356 que dans l'alliage 319, en raison de la différence dans tout le temps de solidification. L'addition des éléments d'alliage tels que le magnésium et le cuivre aux alliages d'Al-7%Si, comme aussi l'addition du strontium, diminue la température de solidification silicium eutectique. Dans les alliages modifiés par le strontium, la phase dendritique primaire a-Al change de forme, à savoir, des rangées parallèles à une structure equiaxe, avec des longueurs de dendrites primaires plus courtes. Les longueurs des dendrites secondaires sont commandées par le rejet des atomes de corps dissous devant les dendrites croissantes pendant la solidification. Plus la teneur en éléments d'alliage est élevée (cas de l'alliage 319), plus la taille de cellules de dendrite est petite. Le fer Fe aide à modifier les particules eutectiques de silicium dans les alliages non modifiés, en particulier à bas taux de refroidissement. Plus le niveau de fer est élevé, plus les particules de silicium sont fines. Dans les alliages modifiés par le strontium, la présence du fer équilibre l'augmentation de la dimension particulaire de silicium avec l'augmentation de DAS, c.-à-d., diminution du taux de refroidissement, ayant pour résultat plus ou de moins de dimensions particulaires uniformes de silicium, indépendamment de la composition en alliage (c.-à-d., alliage 356 ou 319). Le silicium précipite sur les plaquettes de B-Al5FeSi, que ce soit l'alliage modifié ou pas, ou le niveau de fer soit bas ou élevé. Cependant, l'augmentation de la superficie des plaquettes de B-Al5FeSi fournit plus d'emplacements de nucléation pour les particules de silicium et, par conséquent, une amélioration dans leur dimension particulaire. La surmodification des particules de silicium a lieu quand les précipités excessifs de strontium sous forme d'Al2Si2Sr prennent naissance pendant des réactions co-eutectiques ou post-eutectiques. Ces particules d'Al2Si2Sr sont de forme polygonale et sont incohérentes avec la matrice. La phase d'Al2Si2Sr peut également être précipitée directement dans la fonte quand le niveau de strontium est suffisamment élevé, dans ce cas les particules prennent la forme de short, d'aiguilles fines ou de tiges. La précipitation d'Al2Si2Sr co-eutectique a comme conséquence l'absorption de tout le strontium des régions dans lesquelles cette phase se produit. Ces régions deviennent pauvres en strontium, et toutes les particules de silicium se trouvant dans les bords ou côtés demeurent ainsi non-modifiées. La présence des particules grossières de silicium est donc tin résultat de leur état non modifié, plutôt qu'en raison d'un retour de la morphologie fibreuse à la forme de plaquettes. Le mécanisme de l'effet du fer sur la modification du silicium eutectique dans les alliages traités par le strontium peut être proposé comme suit. Dans les conditions de sous modification, les plaquettes de B-Al5FeSi se précipitent dans un bain de liquide Al-Si-Sr, où le strontium adhère à la surface des plaquettes. Les particules de silicium nucléés sur les plaquettes de P-A^FeSi sont ainsi très fines (1-2 um). Cependant, ailleurs dans la matrice, les particules de silicium demeurent non modifiées (longueur moyenne ~ 9-12 um). Dans les conditions de bonne modification, les particules d'Al2Si2Sr sont non modifiées, et ce est dû à l'épuisement du strontium dans ces secteurs, tandis que celles ailleurs dans la matrice sont bien modifiées. En conclusion, la présente étude a essayé de présenter une compréhension détaillée des processus et des phénomènes réels impliqués dans l'évolution de la microstructure des deux alliages populaires en l'industrie de l'automobile, tenant compte de la gamme des niveaux de fer généralement obtenu dans les alliages commerciaux, et des interactions qui résultent quand de tels alliages sont soumis aux procédures normales de traitement et de solidification du métal liquide suivies dans la production des pièces coulées. On s'attend à ce qu'une telle compréhension fournisse les moyens d'améliorer la commande la microstructure et, par conséquent, la qualité de produits finis obtenus.
150

Effets des éléments alliés et de la trempe, lors des traitements thermiques T4 et des vieillissements artificiels, sur la microstructure et les propriétés mécaniques des alliages aluminium-silicium de type 413

Moreau, Charles January 2004 (has links) (PDF)
Plusieurs types d'alliages d'aluminium de fonderie sont employés pour des applications automobiles principalement pour réduire la masse des véhicules. Parmi ces derniers, les alliages eutectiques sont utilisés pour leur bonne coulabilité. L'alliage utilisé dans cette étude est l'alliage 413.1 auquel différentes additions ont été réalisées. Neuf différentes compositions ont ainsi été étudiées. Il s'agit de l'alliage 413.1 de base et ce même alliage avec différentes additions de strontium (Sr), magnésium (Mg), cuivre (Cu), argent (Ag), lanthane (La), cérium (Ce), zinc (Zn) et nickel (Ni). Les caractéristiques de la microstructure et les propriétés mécaniques des alliages de fonderie dépendent de plusieurs facteurs tels la composition chimique des alliages, la vitesse de solidification et les traitements thermiques. Cette étude permet de formuler des conclusions concernant les modifications de la microstructure et les variations de propriétés mécaniques en traction en fonction de la composition des alliages et des traitements thermiques appliqués. Les différents traitements thermiques qui sont examinés sont les traitements T4 et T6. La mise en solution se fait à 495°C pendant deux temps différents de quatre ou vingt-quatre heures. Quatre types de trempe sont utilisés : un refroidissement à l'air ambiant, une trempe à l'eau chaude (60°C) et deux trempes dans un appareil projetant de l'eau et de l'air sous pression. Les deux températures de l'eau utilisée à l'entrée de cet appareil sont de 12°C et 55°C. Ce type de trempe produit un refroidissement intermédiaire entre le refroidissement à l'air ambiant et la trempe à l'eau chaude. Pour le traitement T6, les vieillissements utilisés sont de cinq heures à trois différentes températures; 155°C, 180°C et 240°C. Une série d'échantillons tels que coulés est aussi analysée. Les propriétés étudiées sont : la morphologie des particules de silicium, la fraction surfacique des phases intermétalliques, la distribution des éléments d'addition dans l'alliage ainsi que les propriétés mécaniques en traction, la limite ultime (LU), la limite élastique (LE) et le pourcentage de déformation à la rupture (%Déf). Les conclusions de cette étude sont que la vitesse de solidification de l'alliage a un effet plus important sur la morphologie des particules de silicium eutectique que la modification au strontium et que l'augmentation du temps de mise en solution augmente les changements produits sur la morphologie. Les phases intermétalliques qui se dissolvent le font après quatre heures de mise en solution. Les phases intermétalliques Q-Al5Cu2Mg8Si6 ainsi que ceux contenant du fer, du nickel ou des métaux terres rares ne se sont pas dissoutes après vingt-quatre heures de mise en solution. Parmi les phases intermétalliques présentes, seul la phase B-Al5FeSi influence la grosseur des particules de silicium eutectique. Ces composés se solidifient en premier et entraînent avec eux une certaine quantité de strontium qui reste à proximité de ces composés pour modifier de façon plus importante les particules de silicium eutectique des alentours. Les autres phases intermétalliques n'affectent pas la morphologie des particules de silicium eutectique. L'addition de strontium et l'addition de strontium et de magnésium améliorent la limite ultime des alliages tels que coulés tandis que l'addition d'argent et de zinc améliore la limite élastique. Après un traitement thermique T4, c'est l'alliage de base avec une addition de strontium et de cuivre qui obtient les valeurs de résistance mécanique en traction les plus élevées. La mise en solution de vingt-quatre heures n'améliore pas la résistance des alliages comparativement à une mise en solution de quatre heures. Pour les traitements thermiques T6, le vieillissement à 155°C est plus approprié pour les alliages ne contenant pas de cuivre et le vieillissement à 180°C fait plus augmenter les propriétés des alliages qui en contiennent. Par contre, la température de vieillissement de 240°C est trop élevée pour être appliqué pendant cinq heures et elle produit un sur vieillissement. Le vieillissement à la température de 180°C diminue considérablement la ductilité des alliages. Plusieurs d'entre eux se rompent dans la partie élastique de la courbe de traction.

Page generated in 0.0417 seconds