• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 102
  • 75
  • Tagged with
  • 295
  • 275
  • 274
  • 48
  • 19
  • 13
  • 11
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Rôle des inclusions dans la germination de la phase a-aluminium des intermétalliques contenant du fer dans le coin riche en alumimium du système ternaire Al-Si-Fe

Khalifa, Waleed January 2003 (has links) (PDF)
Le but de ce travail était d'étudier la germination des intermétalliques du fer (Fe) et de la phase cc-Al à partir des alliages liquides dilués Al-Si-Fe, sur le noyau de particules d'inclusions courantes se trouvant dans les alliages d'aluminium commerciaux. Les inclusions furent introduites dans l'alliage fondu en utilisant une technique d'injection de gaz. Des expérimentations systématiques furent mises au point afin d'étudier l'effet (i) de la composition de l'alliage (Fe et Si), (ii) du taux de refroidissement (de 0.2 °C/s à 15 °C/s, similaire à ceux rencontrés dans la plupart des procédés de fonderie des alliages commerciaux), et (iii) du type d'inclusions (où une variété d'inclusions, dont les plus courants des oxydes, carbures et borures, furent utilisées). De plus, une analyse en profondeur du système d'injection de gaz fut aussi entreprise, celle-ci s'avérant utile à la compréhension de l'influence des particules solides et des propriétés du métal liquide sur le procédé d'injection de gaz. Six alliages expérimentaux représentatifs de la partie riche en aluminium du système Al-Si-Fe furent utilisés dans la présente étude. Des expériences d'injection de gaz pour ajouter une variété d'inclusions (a- et Y-AI2O3, MgO, CaO, TiC, SiC, AI4C3 et TÏB2) aux alliages fondus, furent entreprises en utilisant une technique d'injection de gaz qui a permis d'introduire avec succès les différents oxydes, carbures et borures dans les alliages d'aluminium liquide. Les alliages dans lesquels des inclusions furent injectées ont été coulés dans différents moules afin d'obtenir des taux de refroidissement variés. Plusieurs techniques d'examen furent utilisées pour étudier l'effet de la composition de l'alliage, du taux de refroidissement, et du type d'inclusion, sur la structure des alliages. Ces techniques sont l'analyse thermique, l'analyse d'image, la micro-analyse par sonde électronique équipée avec la cartographie, le rayon X par énergie dispersive et le spectromètre des rayons X par longueur d'onde. Les résultats ont montré que la fraction volumique des intermétalliques du Fe obtenue augmente avec les quantités de Fe et Si ajoutées, aussi bien qu'avec la baisse du taux de refroidissement. Un taux de refroidissement faible produit des intermétalliques de dimensions plus grandes, alors qu'un taux de refroidissement élevé résulte en une plus grande densité d'intermétalliques. L'ajout de fer seul est plus efficace que des ajouts de Si ou de Fe+Si à produire des intermétalliques. La composition de l'alliage et le taux de refroidissement contrôlent la stabilité des phases intermétalliques: Les phases binaires Al-Fe prédominent à des taux de refroidissement bas et à un ratio Fe/Si élevé; la phase PAlsFeSi est dominante à un contenu en Si élevé et à un taux de refroidissement bas; les intermétalliques cc-AlFeSi (i.e. a-AlsFe2Si) existent entre ces deux phases; les phases ternaires riches en Si, telles que l'intermétallique 5-Al4FeSi2, sont stabilisées à des taux de refroidissement élevés et à des contenus en Si de 0.9 % et plus en poids. Les calculs des parcours de solidification représentant les ségrégations de Fe et Si dans la partie liquide, basés sur l'équation de Scheil, ne sont pas conformes aux parcours de solidification actuels, en raison du fait que la diffusion du solide n'est pas prise en compte dans l'équation. Les modèles théoriques de Brody et Flemings [1966], et Clyne et Kurz [1981] ne parviennent pas à expliquer l'écart observé avec le comportement de l'équation de Scheil, puisque ces modèles donnent moins de poids à l'effet de la rétro-diffusion du solide. Une section isotherme métastable du diagramme de phase Al-Si-Fe ajustée à 500°C a été proposée (au lieu de celle à l'équilibre), qui prédit correctement les phases intermétalliques formant dans cette partie du système à des taux de refroidissement bas (-0.2 °C/s). En ce qui a trait à la technique d'injection de gaz utilisée, l'effet des particules d'inclusions sur le développement de la microstructure dans les alliages d'aluminium a démontré la signifiance d'utiliser cette technique dans la conduite d'études systématiques de ce type. Le processus de fluidisation des particules solides fut décrit et discuté en détail. Les équations et diagrammes qui mettent certaines limites sur la vélocité et le débit du gaz sont donnés à titre de guides dans la fluidisation contrôlable. De plus, l'analyse théorique du procédé d'injection de gaz, incluant l'énergétique du transfert des particules de gaz à liquide et l'effet des forces cinétiques, fut utilisée afin de dériver une relation théorique faisant état de la vélocité d'injection minimale requise pour le transfert de particules de gaz à liquide. La capacité de la technique d'injection s'avère être très restreinte par la dimension des particules. Des particules très petites (< 1-^m) ou grandes (> 100-um) ne peuvent être introduites dans le métal liquide en utilisant la présente technique d'injection pour plusieurs raisons reliées à la capacité de pourvoir des débits de gaz appropriés pour l'injection et celle d'avoir une fluidisation ne déstabilisant pas le bain de métal. Alors que la discussion donnée dans ce travail est étroitement reliée au présent système d'injection de gaz, les considérations, particulièrement celles reliées à l'effet des propriétés physiques des particules liquides et solides sur le processus de transfert des particules de gaz à liquide, sont assez générales et devraient être applicables à tout procédé d'injection. Les considérations pratiques générales sont: (i) la mouillabilité a une grande influence sur l'incorporation des particules, une faible mouillabilité nécessitant des vélocités d'injection plus grandes, (ii) la densité du liquide a un effet sur l'incorporation des particules dans le bain de métal, l'incorporation des particules solides dans les liquides plus lourds étant plus difficile et requérant des vélocités d'injection plus grandes, et (iii) plus le type de particules est gros et/ou lourd, plus petite est la vélocité d'injection requise. Les expérimentations d'inoculation systématique entreprises pour étudier l'influence d'inclusions diverses sur la germination de la phase a-Al dans les alliages Al-Si-Fe à des taux de refroidissement différents, ont montré que dans les alliages dilués (contenant moins de 1.5% de Si + Fe), presque tous les types d'inclusions ont des pourcentages élevés d'occurrence à l'intérieur de la phase cc-Al, indiquant que la germination est promue sur la surface de telles inclusions. Dans un alliage hypoeutectique Al-Si contenant 6.3% en poids de Si, les particules d'inclusions de MgO, TiB2, TiC, a-AI2O3, et SiC deviennent surtout des agents nucléants inactifs repoussés dans les régions interdendritiques à cause de l'effet empoisonnant dominant du Si. Les résultats présents furent utilisés avec succès afin d'expliquer les différences d'efficacité des affineurs de grain commerciaux dans les alliages Al-Si hypoeutectiques. Le silicium est ségrégé préférentiellement aux interfaces Al liquide/inclusions de façon à réduire leur énergie libre. Une analyse théorique de l'effet empoisonnant du Si a montré que la ségrégation du Si à l'interface liquide/agents nucléants altère le bilan d'énergie interfaciale de manière que l'efficacité catalytique des particules de s est réduite de façon spectaculaire. Une analyse soignée a montré que l'effet empoisonnant du Si dans l'alliage Al-Si hypoeutectique est surmonté lorsque les particules d'agents nucléants ont des caractéristiques de surface actives tel que représenté par les puissances catalytiques élevées des particules de Y-AI2O3, CaO et AI4C3 dans la germination de la phase a-Al de l'alliage. Bien que certaines inclusions aient des niveaux d'occurrence comparables ou supérieurs à ceux du TiB2 dans la phase a-Al, elles ne peuvent pas être utilisées comme agents nucléants efficaces en raison de leur faible mouillabilité avec l'aluminium liquide ou de leur réactivité chimique. La germination des phases intermétalliques contenant du Fe (c'est à dire les phases binaires Al-Fe, a-AlFeSi, B-AlFeSi, 5-AlFeSi et qi-AlFeSi) sur la surface de différentes inclusions dans les six alliages expérimentaux Al-Si-Fe fut étudiée. Il s'est avéré que la germination de chacune des phases intermétalliques contenant du Fe était généralement promue sur la surface de plusieurs inclusions dans les mêmes conditions de composition d'alliage et de taux de refroidissement. Toutefois, certaines inclusions ont exhibé une haute puissance de germination pour les phases intermétalliques particulières contenant du Fe dans certaines conditions et une faible puissance dans d'autres conditions. Les agents nucléants puissants pour la phase primaire a-Al, tel que Y-AI2O3, ont exhibé une faible puissance pour la germination des particules d'intermétalliques contenant du Fe se trouvant à l'intérieur de la phase primaire (particules intragranulaires). Les inclusions réactives telles que CaO et SiC sont des agents nucléants très puissants pour les particules intragranulaires de la phase intermétallique contenant du Fe. La germination des phases intermétalliques contenant du Fe dans les alliages Al-Si-Fe obéit aux caractéristiques générales de la germination, en particulier, l'effet du taux de refroidissement et de la concentration de soluté sur la puissance des particules d'agents nucléants: (i) II a été observé que l'augmentation du taux de refroidissement améliore la germination hétérogène des phases intermétalliques contenant du Fe sur la surface de différentes inclusions, et (ii) la puissance de germination des particules d'inclusions dans la phase a-Al et dans les régions interdendritiques s'améliore avec l'augmentation de la concentration de soluté jusqu'à un certain niveau. Au-dessus de ce niveau, la concentration de soluté empoisonne les sites de germination. La germination des intermétalliques contenant du Fe dans les alliages étudiés ne semble pas être grandement affectée par le type ou la structure cristallographique de la surface nucléante.
152

Évaluation et identification des inclusions dans les alliages de magnésium AM50A et AZ91D

Paradis, Mathieu January 2003 (has links) (PDF)
La demande grandissante pour le magnésium et ses alliages, ainsi que la grande production de rebuts des procédés de coulées, poussent les producteurs de magnésium à se tourner vers le recyclage pour subvenir à la demande du marché. Le magnésium est un métal aux propriétés très intéressantes : faible densité, bonne résistance à la traction, bonne coulabilité et bonne résistance à la corrosion. Cependant, ses propriétés sont grandement affectées par les inclusions présentes dans le métal. Or, le recyclage du magnésium apporte son lot d'inclusions de toutes sortes. Dans le but de fournir un produit de qualité, les producteurs ont à leur disposition une panoplie d'appareils mesurant la propreté du métal. Toutefois, certains de ces appareils sont très onéreux et nécessitent un technicien qualifié pour les opérer. Les facteurs temporels et économiques étant très importants, il est nécessaire de trouver de nouvelles techniques plus économiques tout en demeurant tout aussi fiables. La présente étude porte sur le magnésium pur : l'alliage AM50A et l'alliage AZ91D. L'étude inclue l'utilisation du « Brightimeter » pour quantifier la concentration des inclusions. L'identification des inclusions a été effectuée par un microscope optique et un analyseur d'images, ainsi que par un microscope à microsondes électroniques couplé à un système de spectroscopie à longueurs d'ondes et à énergie dispersive aussi bien qu'à une cartographie couleur. L'effet de la composition des alliages a été évalué par des essais de traction à la température ambiante. En complément aux essais de traction, la surface de rupture des éprouvettes de traction a également été analysée. Les principaux résultats montrent une baisse notable de l'indice de « Brightimeter » quand le niveau d'oxydes de magnésium dans l'alliage augmente. Lorsque le niveau d'oxydes de magnésium est bas, la variation de l'indice de « Brightimeter » devient très faible. L'analyse électronique révèle la présence de plusieurs types d'inclusions. Les oxydes de magnésium sont les principaux. D'autres oxydes, comme ceux d'aluminium et de fer, sont présents en plus des particules d'origine étrangère comme la silice et les sels. La porosité peut être un défaut majeur dans les alliages. Celles observées dans nos alliages sont les retassures. Leurs effets sur l'indice de « Brightimeter » n'est pas notable, l'appareil semble plutôt insensible à la porosité. La taille des grains peut s'avérer un facteur influençant l'indice de « Brightimeter », mais il n'en est rien. Le joint de grain est de la même couleur que la matrice; c'est seulement après une attaque chimique qu'il est révélé. L'étude portait également sur l'identification et la quantification des phases intermétalliques présentes dans les alliages. Les deux principales phases observées sont la phase Mg-Al-Zn et la phase Mn-Al. La phase Mg-Al-Zn est grandement affectée par l'ajout d'aluminium dans l'alliage; un changement de la taille et de la morphologie des particules de la phase est observé. La phase Mn-Al, quant à elle, n'est pas affectée par l'ajout d'aluminium. La taille des particules de la phase dépend essentiellement de la quantité de manganèse. Les essais de traction sur les éprouvettes de composition chimique différente montrent une relation directe entre la taille, la morphologie et la densité des particules de la phase versus les propriétés mécaniques des alliages. La ductilité diminue avec l'augmentation de la concentration d'aluminium, tandis que les limites d'élasticité et limite ultime semblent plutôt stables. L'analyse de la surface de rupture des éprouvettes de tractions montre un changement du mode de fracture : de ductile, pour les alliages pauvres en aluminium à fragile, pour les alliages riches en aluminium. Ce changement s'observe par l'apparition de plans de clivage sur la surface de rupture. En tenant compte de tous les paramètres étudiés, nous en venons à la conclusion que l'appareil « Brightimeter » est capable de détecter et de mesurer efficacement les oxydes de magnésium dans les alliages. Sa sensibilité est accrue lorsque les niveaux d'oxydes sont à leur plus haut. Pour ce qui est des bas niveaux d'oxydes, l'appareil est bon, mais avec quelques réserves. La sensibilité est affectée par plusieurs paramètres, qui ne doivent pas être négligés. La plupart de ces paramètres dépendent du processus de solidification. Pour établir une relation entre l'indice de « Brightimeter » et le niveau d'oxydes, les paramètres métallographiques doivent être clairement établis.
153

Effets des éléments alliés et des traitements thermiques sur la microstructure et les propriétés de traction des alliages aluminium-silicium 413.0

Lepage, Carl January 2003 (has links) (PDF)
Les alliages aluminium-silicium (Al-Si) de fonderie sont couramment employés dans les applications automobiles en raison de leurs bonnes propriétés mécaniques, d'une bonne coulabilité, des températures de fusion peu élevées, de l'absence de fissuration à chaud et d'une bonne répartition des porosités due au retrait lors de la solidification. Les alliages étudiés dans le cadre de ce travail de recherche sont des alliages de fonderie aluminium-silicium (Al?1 l,3%Si) eutectiques de désignation 413.0. Les caractéristiques microstructurales et les propriétés mécaniques des alliages de fonderie Al-Si eutectiques sont principalement déterminées par leur composition en éléments alliés, par leur structure de coulée et constituants microstructuraux tels que la taille de grain, l'espace inter-dendritique, les dimension, forme et distribution des particules de silicium eutectique et du silicium primaire, aussi bien que par la morphologie et la quantité des phases intermétalliques en présence. Tous ces paramètres se trouvent complètement changés à la suite de l'application de traitements thermiques qui, en retour, influencent les propriétés mécaniques des alliages à l'étude. Ce travail fut entrepris dans le but d'étudier les changements microstructuraux et les phases intermétalliques dans les alliages Al-Si de base 413.0 de même que les variations dans les propriétés de traction, notamment les contrainte ultime, limite d'élasticité et allongement à la rupture (déformation), résultant de l'addition d'éléments alliés ? strontium (Sr), magnésium (Mg), cuivre (Cu), argent (Ag), nickel (Ni), zinc (Zn), cérium (Ce), lanthane (La) et phosphore (P) - à l'alliage de base 413.0, cela dans des conditions d'application de traitements thermiques tels que la mise en solution, la trempe et le vieillissement artificiel. De plus, l'effet de l'ajout de phosphore (P) et des traitements thermiques sur la microstructure et sur les propriétés de traction de l'alliage 413.0 de base modifié au Sr, est étudié du point de vue des interactions phosphore-strontium (P-Sr) lors du processus de modification au Sr. Les changements microstructuraux, notamment les caractéristiques des particules de silicium et la précipitation des phases intermétalliques, sont identifiés au moyen d'examens microscopiques. Par ailleurs, les alliages sont caractérisés par l'analyse thermique consistant à tracer les courbes de solidification décrivant les étapes de formation des phases en présence. Les propriétés de traction sont illustrées à partir des courbes contrainte-déformation obtenues lors des essais de traction effectués sur les alliages 413.0. Diverses expériences en laboratoire sont effectuées sur les alliages étudiés, pour lesquels les spécifications relatives à leur composition en éléments alliés et les traitements thermiques à appliquer sont fournies par General Motors Corporation (GMC). Ces expériences permettent de formuler des conclusions concernant les modifications de microstructure et les variations de propriétés de traction des alliages étudiés en fonction de leur composition respective en éléments alliés et des traitements thermiques appliqués. Les différentes phases des alliages sont examinées en utilisant une microsonde. Les microstructures des surfaces d'échantillons sont examinées au moyen de la microscopie optique et de la microscopie à balayage électronique (MEB), couplées à l'analyse à fluorescence au rayon X par énergie dispersive. La micro-analyse par sonde électronique, et l'analyse de fluorescence par longueur d'onde sont aussi utilisées là où elles sont requises, en utilisant un micro-analyseur. Les traitements thermiques de mise en solution et de vieillissement artificiel sont effectués sur les alliages étudiés au moyen d'un four « Pyradia », alors que la trempe est effectuée à l'eau chaude. Les éprouvettes de traction sont testées à l'aide de la presse mécanique « Instron ». Les valeurs des courbes contrainte-déformation des éprouvettes de traction de chacun des alliages sont recueillies par un système d'acquisition de données relié à l'extensomètre fixé sur l'échantillon d'alliage sollicité en traction. Les analyses thermiques sont effectuées sur des lingots d'alliages et consistent à fondre des échantillons qui sont versés dans un moule en graphite. À l'aide de thermocouples de type K installés au centre du lingot de métal en fusion et connectés à un ordinateur utilisant un logiciel, les courbes de solidification sont tracées. Les résultats obtenus relativement aux observations microstructurales et aux essais de traction sur les alliages eutectiques Al-ll,3%Si de type 413.0 étudiés, révèlent que l'ajout d'éléments alliés, notamment les Mg, Cu, Ag, Ni, Zn, Sr, Ce et La, résulte en une augmentation des valeurs de contrainte ultime et de limite d'élasticité et en une diminution des valeurs de déformation de l'alliage de base 413.0, suite aux traitements thermiques de mise en solution, de trempe et de vieillissement artificiel. Les alliages modifiés au strontium montrent des valeurs élevées de contrainte ultime, de limite d'élasticité et de ductilité en raison du changement de morphologie des particules de silicium eutectiques, à partir d'une forme grossière de flocon jusqu'à une forme fibreuse fine. De même, les résultats démontrent que les alliages modifiés au Sr auxquels du phosphore (P) a été ajouté, possèdent des valeurs de déformation de l'ordre de 4 à 12%, ce qui est bien supérieur à la valeur de déformation minimale de 2% ciblée pour l'alliage de base 413.0 modifié au Sr dans le cadre de ce travail. Ainsi, des compromis seront faits entre la nécessité d'obtenir des valeurs élevées de contrainte ultime et de limite d'élasticité d'une part et celle d'obtenir une ductilité qui soit suffisante, d'autre part.
154

Les effets des paramètres métallurgiques sur les caractéristiques des intermétalliques de fer et sur la phase silicium eutectique dans les alliages Al-Si-Cu (319)

Tahiri, Hicham January 2003 (has links) (PDF)
L'alliage hypoeutectique A319 est largement utilisé dans l'industrie de l'automobile grâce à son excellent rapport poids/résistance, à sa facilité de mise en forme et à sa bonne résistance à la corrosion. Ce présent travail a été effectué afin de déterminer les effets de divers paramètres métallurgiques sur les caractéristiques des intermétalliques de fer et sur la phase silicium eutectique dans les alliages Al-Si-Cu (319). Parmi ces paramètres, on cite la surchauffe (950 °C), la surmodification par le strontium (Sr), l'interaction entre le strontium (agent de modification) et le phosphore (agent d'affinage de silicium primaire) et l'addition de T1AI3. Concernant les essais mécaniques, seules les éprouvettes préparées à 750 °C ont été réalisées. La coulée à haute température (950 °C) était difficile à cause de l'échappement du métal liquide à travers les fermetures du moule. L'analyse de ces essais mécaniques ont prouvé l'effet anormal du phosphore sur la limite ultime (L.U) et sur la limite élastique (L.É). Cet effet s'explique par des réactions entre le strontium et le phosphore produisant, par conséquent, des composés complexes. La surchauffe a entraîné une augmentation de la surfusion : les alliages coulés à basse température (750 °C) ont montré 1.25 °C de surfusion moyenne et ceux qui sont coulés à haute température (950 °C) en ont montré 3 °C. La surchauffe seule n'a pas prouvé un changement apparent sur la taille des plaquettes de la phase (3-Al5FeSi. L'addition du fer a provoqué un raffinement des particules eutectiques de silicium suite au site de nucléation de la phase B-Al5feSi. En l'absence de phosphore (P), la modification au strontium a été remarquable pour des quantités allant de 100 à 120 ppm Sr. Pour aboutir à une modification convenable en présence de phosphore, des quantités en strontium supérieures à 200 ppm sont exigées, afin de neutraliser la désactivation par le phosphore. La surmodification au strontium (Sr) a mené à la formation de la phase Al2SrSi2, dont la forme est polyédrique. La précipitation de cette phase se produit sur un intervalle de température s'étalant dès avant le développement du réseau dendritique jusqu'à la fin de la solidification. Dans tous les cas, la modification du silicium eutectique n'a pas été influencée par la précipitation du strontium sous forme Al2SrSi2. Une dose excessive en strontium a déstabilisé la phase p-Al5FeSi et l'a laissée former à haute température. La quantité du phosphore a été exagérée (600 ppm) afin qu'il soit détecté par la sonde électronique utilisée dans ce travail. En effet, en l'absence de strontium et avec l'augmentation de la température du métal liquide à 950 °C, le phosphore se précipite sous forme d'oxydes de type (Al,P)O2 agissant comme site de nucléation pour les aiguilles de la phase B-Al5FeSi. Des composés complexes P-Sr sont formés lorsque le phosphore est ajouté à l'alliage A319 modifié par le strontium. À l'aide de la technique de spectrométrie des rayons-X par longueurs d'ondes, la formule approchée de ces composés est de la forme (Al,P,Sr)2O5. Ces composés réduisent d'une manière significative l'efficacité de strontium comme agent de modification. En présence de phosphore, et pour aboutir à une structure convenable de l'alliage, une quantité de strontium supérieure à 200 ppm est exigée. Ce dernier est principalement concentré dans les particules eutectiques de silicium. L'addition du titane d'aluminium T1AI3 à l'alliage A319 a mené à la précipitation de plaquettes épaisses dont la nature est Ti(Al,Si)3, et a laissé solidifier la phase dendritique a-Al et la phase B-Al5FeSi à des températures anormalement. Ces plaquettes sont de grande taille puisque leur température de formation est ~ 740°C. Au moyen de spectrométrie des rayons-X par longueurs d'ondes, la formule suggérée de la phase riche en titane fut identifiée. La précipitation des plaquettes de Ti(Al,Si)3, agissant comme site de nucléation, a causé un raffinement des aiguilles de la phase B-Al5FeSi.
155

Effect of trace elements on the microstructure and porosity formation in 319 type Al-Si-Cu alloys

Elhadad, Shimaa January 2003 (has links) (PDF)
Les alliages d'aluminium-silicium Al-Si ont connu nombreuses applications dans l'industrie grâce à leur haute résistance mécanique, leur poids faible, leur bonne résistance à la corrosion et à leur excellente coulabilité. Un des traitements du métal liquide, appliqué sur ces alliages, est la modification par certains éléments comme le strontium (Sr) et le sodium (Na). Avec la modification, la morphologie du silicium eutectique change d'une forme aciculaire à une forme fibreuse ou globulaire. Cette dernière améliore les propriétés mécaniques, particulièrement la ductilité. Les alliages 319, appartenant au système Al-Si-Cu, sont très populaires pour les applications de l'automobile, surtout avec une haute teneur en magnésium (Al-6.5%Si-3.5%Cu-0.4%Mg). Ces applications couvrent une gamme assez large incluant des pièces critiques comme les blocs de moteur, têtes de cylindre, etc. Afin d'optimiser les propriétés de ces alliages, il est nécessaire de prendre compte les impuretés et les éléments de trace, comme le bismuth (Bi), le calcium (Ca), le phosphore (P), etc. Puisque le strontium est fréquemment utilisé dans ces alliages, il est important de savoir l'effet de ces éléments sur l'efficacité du strontium comme agent de modification, et la possibilité de leur interaction avec le strontium sur la qualité du produit final. Avec l'augmentation de l'usage des matériaux recyclés dans l'industrie de l'automobile et la faible connaissance de cet aspect, cette étude a été réalisée. Le but principal est d'améliorer les informations concernant l'effet de l'interaction Sr-Bi et Sr-Ca sur les caractéristiques des particules de silicium eutectique dans les alliages 319 contenant 0.04 et 0.4% Mg en poids. Comme la modification au strontium est presque associée à l'augmentation de la quantité de porosité dans l'alliage, cette dernière a un effet nuisible sur les propriétés mécaniques; l'étude de cet effet fait partie de ce travail de recherche. Les deux alliages 319 utilisés dans ce projet sont modifiés par le strontium (-80 ppm). Par la suite, différentes concentrations de bismuth (50-9000 ppm) et calcium (50-200 ppm) sont ajoutées aux ces alliages. Les alliages fondus sont coulés dans un moule en graphite préchauffé à 600°C avec un taux de refroidissement -0.8 °C/s. Ce dernier est proche aux conditions de l'équilibre pour réaliser les différentes phases en utilisant la technique d'analyse thermique. D'autre part, le métal liquide a été coulé dans un moule métallique avec un angle variable (0.5 et 15°). Avant l'analyse métallographique, tous les échantillons ont été coupés et polis selon une technique standard. L'analyse microstructurale fut réalisée en utilisant un microscope optique combiné à un logiciel analyseur d'images de type Leco 2001 dans le but de quantifier les diverses phases. Pour identifier la nature de ces phases, les échantillons sont examinés par une microsonde électronique combiné à un système de rayons-X et un système de spectrométrie des rayons-X par longueur d'ondes. Les résultats montrent que l'effet de la modification au strontium diminue d'une façon continue avec l'addition du bismuth jusqu'à 2250 ppm. A cette concentration, on note l'absence de la surfusion de l'eutectique indiquant la non modification. Cette observation est attribuée à la réaction entre le Sr-Bi ou entre le Bi-Mg-Sr durant la solidification avant la réaction eutectique. Cette réaction diminue la quantité du Sr libre qui est nécessaire pour la modification des particules de silicium eutectique. En augmentant de plus la teneur en Bi jusqu'à 6500 ppm, on observe le retour du phénomène de la surfusion renseignant l'efficacité du bismuth comme agent de modification. Le bismuth est précipité sous forme d'oxydes contenant quelques ppm en Sr avec une bonne quantité de magnésium (~ 5%), indépendamment du taux de refroidissement appliqué. Les additions en calcium de l'ordre de 17 ppm et plus, augmentent la taille des particules de silicium eutectique, due à la formation de composés Al-Si-Ca-Sr. La nature de ces composés, dont la forme est tiges ou plaquettes, correspond respectivement aux compositions chimiques Al7(Ca,Sr)Si7 ou Al2(Ca,Sr)Si2. Un autre paramètre à considérer est la présence du magnésium dans l'alliage en question. Les impuretés comme A1P, MgAhO4 et MgO agissent comme site ou emplacement de nucléation pour la précipitation des plaquettes contenant de calcium. La croissance de cette phase aura lieu par un mécanisme de macles. En coulant dans un moule variable, la vitesse du solidus est contrôlée par la rejection du soluté à l'interface solide-liquide. Cet effet est plus significatif, particulièrement avec un petit moule (0° angle), comparé au grand moule (15° angle), et ceci est du à la grande vitesse de solidification associée au petit moule. Ce dernier montre la formation de points chauds surtout au fond du moule. En ce qui concerne la formation de porosité, le pourcentage de porosité augmente avec l'addition de bismuth (~ 2000 ppm), résultant de la formation d'oxydes de bismuth ou d'oxydes de bismuth et de strontium. Avec une concentration assez élevée en bismuth (-6000 ppm), le bismuth est partiellement oxydé. Cependant, la porosité est toujours associée à la partie de bismuth oxydée. Dans le cas du calcium, la porosité est toujours associée avec CaO qu'avec les composés en calcium mentionnés auparavant. Les oxydes de bismuth et de calcium forment de microporosité trop fine (~1 um ou moins). Cette observation explique le faible pourcentage de porosité mesurée dans ces alliages. Pour les alliages coulés en petit moule (0° angle), la porosité est fréquemment observée au voisinage de points chauds.
156

Simulation de l'accrétion de glace sur un obstacle bidimensionnel par la méthode des bissectrices et par la modélisation des ruisselets et des gouttes de surface

Fortin, Guy January 2003 (has links) (PDF)
Le LIMA (Laboratoire International des Matériaux Antigivre) en collaboration avec le CIRA (Italian Aerospace Research Centre) a développé un logiciel simulant l'accrétion de la glace en régimes sec et humide sur un objet bidimensionnel fixe. L'approche utilisée s'appuie sur les travaux de Lozowski pour les bilans énergétiques, sur une étude du comportement du film d'eau, des ruisselets et des gouttes de surface pour le calcul des rugosités et des masses d'eau résiduelle, ainsi que sur une méthode de bissectrice pour l'évolution de la surface de glace. La contribution du CIRA a été de fournir le logiciel pour le calcul des écoulements et de la captation. Le bilan énergétique basé sur la conservation de l'énergie est la sommation de la chaleur latente de fusion, d'évaporation et de sublimation, du réchauffement adiabatique et cinétique, et des pertes de chaleur par convection et conduction, ainsi que de l'évolution thermodynamique de l'eau de son état initial à son état final. La densité de la glace, qui a un impact important sur la simulation, est calculée à partir d'une corrélation empirique développée avec les cylindres tournants. En se basant sur les travaux de Al-Khalil et Hansman, le comportement des gouttes en régimes sec et humide a été décrit analytiquement, ce qui a mené à déterminer la hauteur maximale que peuvent atteindre les gouttes avant mouvement. Cette hauteur, appelée hauteur de mouvement, permet de déterminer l'état de l'eau sur la surface (film, ruisselets ou gouttes), ainsi que la hauteur des rugosités lorsque l'eau existe sous forme de gouttes ou de ruisselets. La hauteur de mouvement est déterminée par l'équilibre entre les forces de cisaillement, induites par les effets aérodynamiques et gravitationnels évalués pour une goutte non déformée, et la force de cisaillement, induite par la tension de surface et la déformation de la goutte. Elle a été validée en laboratoire et la précision obtenue pour la partie aérodynamique et gravitationnelle est de 80%. L'étude de la vague qui se forme sur le film a permis de déterminer la hauteur des rugosités lorsque l'eau existe sous forme de film. La masse d'eau résiduelle est calculée à partir des modèles analytiques élaborés selon l'état de surface et la hauteur de mouvement. Ces modèles, basés sur la physique du processus de croissance et de solidification pour le film, les ruisselets et les gouttes, interprètent la solidification à l'échelle de l'élément de surface. Le modèle pour la masse d'eau arrachée a été construit à partir d'observations numériques, il considère que toute la masse d'eau ruisselante à la surface de l'intrados est arrachée sous l'effet des forces aérodynamiques et/ou gravitationnelles. Finalement, la masse de glace accumulée est additionnée à la surface en appliquant une méthode mathématique basée sur l'aire délimitée par les bissectrices entre les panneaux. Elle permet de simuler l'évolution de la surface du dépôt en additionnant la masse de glace de façon continue, afin d'obtenir les formes complexes observées expérimentalement. Le modèle d'accrétion est validé avec les profils de glace obtenus expérimentalement en soufflerie par Shin et Bond pour un profil d'aile NACA0012 de 0,5334 m de corde, des gouttelettes d'eau surfondues de 20 um, une teneur en eau liquide de 1 g/m3 et une vitesse de 65 m/s. Ces résultats couvrent les deux régimes d'accrétion, sec et humide, dans l'intervalle de température s'échelonnant de -4,4°C à -28,3°C. La rugosité obtenue par simulation est du même ordre de grandeur que celle calculée avec la corrélation empirique développée par Ruff. Des simulations ont démontré que la variation de l'incrément de temps d'accrétion (en le diminuant de moitié ou en le doublant) et de la longueur maximale des panneaux (1%, 2% et 3% de la corde) ont peu d'impact sur la méthode des bissectrices utilisée pour le calcul de la géométrie et sur la hauteur et la distribution des rugosités. L'ajout des modèles analytiques pour le calcul des hauteurs locales des rugosités, des masses d'eau résiduelles et arrachées, ainsi que du modèle de bissectrice au modèle thermique couramment utilisé pour l'accrétion de glace sur les ailes d'avion a amélioré les résultats. Les profils de glace simulés concordent bien avec ceux mesurés en laboratoire, mais, dans la majorité des cas, le volume de glace est légèrement supérieur à celui mesuré.
157

Paramètres contrôlant la précipitation et la dissolution de la phase CuAl2 du cuivre dans les alliages d'aluminium de type 319 et leurs influences sur la performance

Li, Zheng January 2003 (has links) (PDF)
Les alliages aluminium-silicium-cuivre (Al-Si-Cu), particulièrement les alliages du type 319, sont couramment employés dans les applications automobiles en raison de leurs excellentes propriétés mécaniques et caractéristiques de coulabilité. Une étude approfondie reliée à l'investigation du comportement de la précipitation de la phase CuAl2 dans divers alliages de type 319 contenant des éléments alliés dont les strontium (Sr), fer (Fe) et phosphore (P), et sa dissolution durant la mise en solution à 505°C pour des temps allant jusqu'à 100 heures, fut effectuée dans le présent travail. De plus, l'effet du CuAl2 et d'autres intermétalliques sur la performance de l'alliage soumis à deux conditions de traitements thermiques différentes (i.e., T5 et T6) a aussi été investi gué à travers un examen des propriétés de traction et d'impact. En comparant les résultats expérimentaux, des conclusions furent tirées en termes des paramètres de solidification optimaux des éléments alliés, et des conditions de traitement thermiques (viz., modification au Sr, contenu en Fe, taux de refroidissement et condition T6). Les comportements de fracture des alliages 319 de base et des alliages 319 modifiés au Sr et contenant -1.2% Fe furent aussi comparés à travers une étude des surfaces des échantillons d'alliages correspondants. Les résultats révèlent explicitement que le traitement de mise en solution joue un rôle critique dans la dissolution de la phase CuAl2. La modification au strontium mène à la ségrégation de la phase CuAl2 à l'extérieur des régions eutectiques des alliages Al-Si, ce qui ralentit sa dissolution durant la mise en solution. De plus, le phosphore a un effet négatif sur la dissolution du O1AI2 en raison de sa solubilité dans les particules de CuAl2 et la formation de particules d'oxydes (Al,P)02 qui agissent en tant que sites de germination pour la précipitation de la phase CUAI2 de type bloc. Cependant les plaquettes de la phase de fer B-Al5FeSi présentes dans la structure agissent en tant que sites préférentiels de précipitation pour les particules de la phase de cuivre, et ainsi diminue le degré de ségrégation et accélère leur dissolution. Le taux de refroidissement est le paramètre le plus efficace pour contrôler les propriétés mécaniques des alliages 319 étudiés. Les propriétés de traction et d'impact augmentent toutes deux avec une augmentation du taux de refroidissement (i.e., une diminution de la valeur de l'espace inter dendritique secondaire (DAS) peu importe la composition de l'alliage ou le traitement de mise en solution (T5 et T6). Les alliages modifiés au strontium montrent des valeurs beaucoup plus élevées de limite ultime et de ductilité en raison du changement de morphologie des particules de silicium eutectiques à partir d'une forme grossière de flocon jusqu'à une forme fibreuse fine. Des additions de fer et de phosphore ont toutes deux un effet préjudiciable sur les valeurs de limite élastique et de ductilité, en raison de la présence des plaquettes de B-Al5FeSi et des particules d'oxydes (A1,P)O2, respectivement. L'addition de fer mène à une précipitation accentuée de plaquettes fragiles de (3-Al5FeSi qui agissent en tant que sites préférentiels de fissuration et qui réduisent dramatiquement les propriétés d'impact, peu importe la valeur de l'espace inter dendritique (DAS). La modification au strontium et la sphéroidisation des particules de silicium peuvent compenser pour la perte en énergie d'impact causée par la présence de grandes plaquettes aciculaires de B-Al5FeSi résultant de l'addition de -1.2% Fe. Comparativement au traitement T5, les alliages étudiés révèlent des valeurs plus grandes de propriétés mécaniques sous des conditions T6 en raison de la sphéroidisation partielle des particules de silicium et la dissolution et redistribution de la plupart des particules de CuA^ à l'intérieur de la matrice aluminium. Ainsi, plus de cuivre est disponible pour agir comme agent de renforcement durant le vieillissement artificiel. L'initiation des fissures se produit habituellement par la fragmentation des particules de silicium et des plaquettes de B-Al5FeSi, et la fissure se propage à travers le clivage des plaquettes de B-Al5FeSi, la fracture du CuAl2 non dissous ou d'autres intermétalliques de cuivre, aussi bien que par les particules de silicium fracturées. Dans les alliages 319 modifiés au strontium, les fissures sont principalement initiées par la fragmentation ou le clivage de la phase P-Fe, en plus de celle des particules grossières de silicium et d'intermétalliques de cuivre non dissous.
158

The modeling of hot tearing in aluminium alloy

Wu, Weili January 2003 (has links) (PDF)
Le présent mémoire fait partie d'un projet de recherche d'envergure élaboré par la chaire industrielle Alcan-UQAC sur la solidification et la métallurgie de l'aluminium (CSMA), portant sur la fissuration à chaud des alliages d'aluminium coulés en régime semi continu. La modélisation de la microstructure a été réalisée à partir d'un modèle mathématique développé par un chercheur de la CSMA et de la simulation de la solidification d'un alliage Al-4.5%Cu; les résultats des simulations ont été ajustés et validés à l'aide de données expérimentales pertinentes. L'information fournie par le modèle de microstructure, tel le champ de température, l'évolution de la fraction solide, la grosseur et la morphologie des grains, est essentielle à toute étude théorique portant sur la fissuration à chaud. De manière à prédire la susceptibilité à la fissuration à chaud durant la solidification, deux critères ont été introduits séparément dans le modèle microstructural. Le critère développé par Lahaie et Bouchard (LB) est basé sur le comportement idéalisé d'un corps à l'état semi ou quasi solide, alors que celui de l'équipe Rappaz-Drezet-Grenaud (RDG) considère la diminution significative de pression à l'intérieur de la zone critique semi solide, lorsqu'une pore à tendance à se former dans le réseau de dendrites, sous l'influence du changement de volume et des contraintes thermiques associées au processus. Dans le modèle idéalisé de LB, on considère le comportement visqueux et les forces de capillarité du liquide résiduel qui entoure les grains pour évaluer les conditions de déformations critiques et les contraintes de rupture de l'assemblage quasi-solide. Pour un alliage donné, la déformation critique dépend principalement de la fraction solide, des conditions de solidification et du taux de déformation. Nos simulations ont permis d'identifier les conditions de solidification qui peuvent conduire à la formation de criques; elles ont aussi été utilisées pour analyser la susceptibilité à la fissuration à chaud d'un alliage Al-4.5%Cu sous différentes conditions de solidification. Pour vérifier la pertinence du modèle microstructural développé et des critères de fissuration suggérés, de même que pour valider le comportement d'un alliage Al-Cu en cours de solidification, quelques expériences ont été réalisées sur un simulateur reproduisant les conditions de solidification de la croûte d'un lingot industriel coulé en régime semi continu. Les déformations sous l'effet d'une charge croissante ont été mesurées directement sur la surface du mini lingot expérimental, dont la croûte était quasi ou complètement solide. Le phénomène de fissuration fut provoqué sous ces conditions particulières de coulée et de contraintes. Les résultats anticipés par la modélisation mathématique furent comparés à ceux obtenus expérimentalement. Les écarts parfois importants ont donné lieu à une discussion qui a permis de mettre en lumière la faiblesse des critères de fissuration proposés et de suggérer de nouvelles pistes plus prometteuses. L'utilisation du critère LB dans le modèle microstructural conduit à des contraintes de rupture du même ordre de grandeur que celles mesurés expérimentalement. En améliorant le modèle LB, notamment en introduisant des paramètres réalistes de distribution spatiale de la fraction solide, tel que récemment proposé par un co-directeur du présent mémoire, on obtient une meilleure corrélation entre la déformation critique prédite par la modélisation et celle observée expérimentalement. Les simulations réalisées en faisant appel au critère de fissuration proposé par RDG indiquent que cette approche peut être intéressante pour étudier la formation de criques dans la région centrale d'un lingot cylindrique. Cependant, d'autres travaux sont requis pour indiquer si ce critère est applicable à la fissuration à chaud dans la croûte d'un lingot conventionnel coulé en régime semi continu. Des voies nouvelles sont suggérées pour améliorer notre compréhension des mécanismes de fissuration à chaud des alliages d'aluminium.
159

Étude de la relâche des inclusions lors de la filtration de l'aluminium liquide

Murray-Chiasson, Audrey January 2002 (has links) (PDF)
La filtration de l'aluminium liquide est l'étape critique du processus de purification du métal avant la coulée en lingots. La filtration de l'aluminium permet d'éliminer les impuretés solides (inclusions), non métalliques, de très petites tailles, qui pourraient être la cause de trous ou de déchirures dans la production de fils ou de feuilles minces. Effectuée à travers un filtre granulaire d'alumine tabulaire, la filtration est un procédé semi continu. Lorsque le processus est arrêté, puis reparti, pour des raisons inhérentes au procédé ou même en période continue, un phénomène de relâche des inclusions capturées précédemment par le filtre granulaire peut survenir et affecter la qualité du métal produit. Une étude expérimentale sur la relâche d'inclusions sphériques de PVC par les filtres granulaires représentant ceux utilisés en industrie est menée. Grâce à un montage permettant l'utilisation de l'eau comme fluide porteur, la reproduction d'un système de filtration industriel est réussie puisque l'eau possède une viscosité cinétique qui est du même ordre de magnitude que celle de l'aluminium en fusion. Beaucoup d'études ont tenté d'exprimer le terme d'accumulation des inclusions dans plusieurs types de filtres. Cependant, peu de ces études tentent de prouver l'existence et tentent d'exprimer mathématiquement le phénomène de relâche en écoulement continu, encore plus rarement, en écoulement interrompu. Un modèle mathématique à une dimension d'écoulement à travers un filtre granulaire permettant de reproduire les courbes de concentration de sortie et de déposition totale a été créé afin de faire ressortir les expressions cinétiques des termes d'accumulation et de relâche en écoulement continu et en écoulement interrompu (la déposition totale étant la différence entre l'accumulation des inclusions de PVC sur les grains filtrants et la relâche par le filtre granulaire de ces mêmes inclusions en écoulement continu ou interrompu. Ce modèle utilise donc une géométrie elliptique pour représenter la forme des grains filtrants puisque c'est cette géométrie qui décrit le mieux le médium industriel. L'étude présente a pu, grâce aux courbes expérimentales et au modèle, déterminer s'il y a présence de relâche en écoulement continu et en écoulement interrompu sur une période de 7 heures, période représentant la capacité totale de fonctionnement du montage expérimental. Parallèlement à l'objectif d'exprimer la relâche en écoulement continu et en écoulement interrompu, une étude paramétrique qualitative permettant d'identifier les paramètres d'opérations favorisant le plus l'accumulation des inclusions et minimisant le plus possible la présence du phénomène de relâche en écoulement continu et en écoulement interrompu est menée. Il s'avère qu'une taille plus petite de grains filtrants favorise l'accumulation des inclusions en écoulement continu et interrompu et que des filtres granulaires plus longs minimisent la présence de la relâche surtout en écoulement interrompu. L'augmentation étudiée de la teneur en inclusions à l'entrée du filtre granulaire favorise plus l'accumulation qu'aux conditions standard et n'a pas d'influence directe sur le relâche en écoulement interrompu. Finalement, l'augmentation de vitesse de l'écoulement à tendance à influencer négativement l'accumulation en écoulement continu et en écoulement interrompu et influence également négativement la relâche en écoulement interrompu.
160

Effets des intermétalliques de fer et des porosités sur les propriétés de traction et d'impact sur les alliages de coulée Al-Si-Cu et Al-Si-Mg

Ma, Zheyuan January 2002 (has links) (PDF)
Les alliages aluminium-silicium (Al-Si) sont une importante classe de matériaux qui constituent la majorité des pièces d'aluminium coulées produites, dû à leurs propriétés supérieures et leurs excellentes caractéristiques de coulées. À l'intérieur de cette famille d'alliages, les alliages de fonderie Al-Si-Cu et Al-Si-Mg sont fréquemment employés dans les applications automobiles. Les alliages commercialement populaires 319 et 356, représentant ces deux systèmes d'alliages, furent sélectionnés pour étude dans le présent travail, avec pour but d'investiguer l'effet des intermétalliques du fer et des porosités sur la performance de l'alliage. Ceci fut exécuté à travers une étude des propriétés de traction et d'impact, celles-ci étant deux propriétés mécaniques importantes utilisées dans les calculs de conception. Le fer, à travers la précipitation des constituants intermétalliques de seconde phase, en particulier la phase en forme de plaquettes B-Al5FeSi, est nuisible aux propriétés des alliages. De même les porosités dues au gaz ou aux retassures dans les coulées sont nuisibles aux propriétés mécaniques. Par la détermination des éléments d'alliage, du processus de fonderie et des paramètres de solidification optimaux (viz., le contenu en Fe, la modification au Sr et le taux de refroidissement) requis pour minimiser les effets nuisibles des porosités et des intermétalliques du fer, et par l'étude de leur rôle sur le comportement des fractures, le mécanisme de fracture dans les alliages a pu être déterminé. Des coulées furent préparées à partir des fontes d'alliages industriels et commerciaux 319.2, B319.2 et A356.2, contenant des niveaux de Fe de 0.2-1.0 wt%. Des fontes modifiées au Sr (-200 ppm) furent aussi préparées pour chaque niveau de Fe. Les moules réfractaires refroidis aux extrémités utilisés ont donné une solidification directionnelle et une plage de taux de refroidissement (ou espace interdendritique) à l'intérieur de la même coulée. Des échantillons de traction et d'impact, machinés à partir de spécimens provenant des coulées, et sectionnés à diverses hauteurs au-dessus de l'extrémité refroidie, ont donné des espaces interdendritiques de ~23 à ~85 jim. Tous les échantillons furent soumis à un traitement thermique T6 avant les essais. Les essais furent exécutés en employant les machines d'essais Instron Universal et Instrumented Charpy. Les techniques de microscopie optique, d'analyse d'image, de SEM et de EPMA furent utilisées dans les analyses microstructurales et de fracture. Les résultats ont démontré que le taux de refroidissement le plus élevé (23 um d'espace interdendritique) est le paramètre le plus significatif contrôlant la dimension et la distribution de la phase B-Al5FeSi et des porosités, dans les alliages non modifiés 319.2 et A356.2. La modification au Sr est plus efficace dans la réduction de la dimension des plaquettes de phase p, à des bas niveaux de Fe, mais celle-ci augmente à la fois la fraction volumique des porosités et la dimension des pores de façon significative. L'alliage B319.2 contenant du Mg montre une réduction de la dimension des plaquettes de P due à sa transformation partielle en particules de script chinois Al8FeMg3Si6. Dans les alliages modifiés au Sr, une augmentation de la dimension des plaquettes P est encore observée à certains taux de refroidissement. La fraction volumique des porosités et la dimension des pores diminuent aussi avec l'addition de Mg. La ductilité des alliages est améliorée par l'augmentation simultanée du taux de refroidissement et de la réduction du contenu en Fe. La ductilité de l'alliage B319.2 est inférieure à celle de l'alliage 319.2 dû à la précipitation du Mg2Si, à la transformation partielle de B-Al5FeSi en Al8FeMg3Si6, et à l'interaction Sr-Mg qui diminue l'efficacité de la modification au Sr. L'alliage A356.2 affiche une ductilité beaucoup plus élevée que les alliages 319 pour un même niveau de Fe, dû à l'absence de la phase intermétallique CuAl2 dans le premier alliage. La modification au Sr améliore aussi à la fois la ductilité et la résistance en traction, et est utile dans le maintien d'une limite ultime cohérente dans les alliages 319, puisqu'une dispersion beaucoup moindre des valeurs de limite ultime est observée, peu importe leur source (expérimentale ou industrielle). Aucun effet apparent sur la limite élastique n'est observé. Le fer détériore la limite ultime dans les alliages expérimentaux non modifiés et les alliages industriels modifiés 319.2, B319.2 et A356.2. Des corrélations polynomiales du second degré sont obtenues entre la limite ultime et le contenu en Fe à tous les taux de refroidissement (R2 >0.8) pour la plupart des alliages; les alliages expérimentaux modifiés et les alliages industriels non modifiés 319.2, cependant ont montré une dispersion considérable de la limite ultime. La corrélation entre la contrainte et le contenu en Fe ou le taux de refroidissement est plus complexe: en général, la limite élastique augmente à la fois avec le taux de refroidissement et le contenu en Fe dans les alliages 319.2 (R2 >0.8). Dans les alliages B319.2, l'effet du taux de refroidissement n'est pas très apparent: Fe augmente la limite élastique dans les alliages expérimentaux mais diminue celle-ci dans les alliages industriels. Dans les alliages A356.2, les valeurs de la limite élastique sont distribuées à l'intérieur d'une plage étroite montrant une tendance à la baisse dans les alliages non modifiés et une tendance à la hausse dans les alliages modifiés. La dimension des plaquettes de B-Al5FeSi affecte la ductilité et la résistance en traction des alliages, les changements étant très perceptibles jusqu'à des longueurs (ou surfaces) de plaquettes p de -100 um (400 um2) dans les alliages 319 et de -70 um (300 um2) dans les alliages A356.2. Des corrélations de puissance et logarithmiques sont obtenues entre la ductilité et la dimension des plaquettes P (R2 >0.8). Dans les alliages A356.2, seules de faibles variations dans la dimension de la phase p peut être tolérée afin de maintenir des niveaux de ductilité satisfaisants. La diminution de la limite ultime avec la dimension des plaquettes P est plus prononcée dans les alliages 319.2 que dans les alliages B319.2 et A356.2. Aucune relation définie entre la dimension des plaquettes P et la limite élastique n'a pu être établie. La porosité est nuisible à la résistance en traction et à la ductilité des alliages. Bien que le paramètre de dimension maximum des pores caractérise le mieux les relations entre la porosité et les propriétés de traction, les valeurs de R2 obtenues montrent que cela n'est pas le facteur primaire contrôlant la ductilité et la résistance en traction. Aucune corrélation définie n'a pu être établie entre la porosité et la limite élastique. Des corrélations linéaires assez bonnes ont été obtenues entre le log de la limite ultime et le log de la déformation (%) pour tous les alliages, expérimentaux ou industriels, sous toutes les conditions (R2 : 0.6-0.93). L'utilisation de cette relation est recommandée au lieu de la relation entre la limite ultime et le log de la déformation (%) basée sur le concept d'index de qualité proposé par Drouzy et al.136 pour interpréter les propriétés de traction des deux systèmes d'alliages. Les propriétés d'impact sont aussi améliorées avec l'augmentation du taux de refroidissement et la réduction du contenu en Fe. Les alliages modifiés 319.2 montrent des relations de puissances et linéaires (à des bas/hauts taux de refroidissement), alors que les alliages non modifiés 319.2 et A356.2 montrent des corrélations linéaires, tous les alliages B319.2 montrent de corrélations de puissance, et les alliages modifiés A356.2 montrent des corrélations logarithmiques à tous les taux de refroidissement (R2 >0.95 dans tous les cas). Les propriétés d'impact obtenues au plus haut taux de refroidissement sont de loin supérieures à celles obtenues à des taux de refroidissement autres {cf. 12.4 J à 23 um d'espace interdendritique avec 4.88 J à 85 um d'espace interdendritique dans les alliages non modifiés 319.2). L'intermétallique B-Al5FeSi détériore les propriétés d'impact de façon significative, l'effet étant le plus apparent pour des dimensions des plaquettes P se situant à l'intérieur de la plage 30-150 um dans les alliages 319, et 10-50 um dans les alliages A356.2. Des corrélations assez bonnes ont été obtenues entre les porosités et les propriétés d'impact. En présence de Mg, l'alliage non modifié B319.2 montre une augmentation de l'énergie d'impact, particulièrement à des niveaux faibles (0.4%) en Fe et à des taux de refroidissement élevés (espace interdendritique 23-47 um). Le strontium est efficace dans l'amélioration de l'énergie d'impact, même à des niveaux élevés en Fe. L'amélioration est moins apparente dans les alliages B319.2, et très sensible au changement du taux de refroidissement dans les alliages 319.2. Les alliages A356.2 modifiés au Sr montrent des énergies d'impact du double de celles des alliages 319 soumis aux mêmes conditions dû à l'absence de la phase CuAl2 dans les premiers alliages. Une bonne relation inverse est obtenue entre la vitesse moyenne de fissuration et l'énergie d'impact, les plus hautes vitesses de fissuration étant observées dans les échantillons non modifiés obtenus à des contenus en Fe les plus élevés et aux taux de refroidissement les plus bas. Les essais d'impact sont plus sensibles aux variations dans la microstructure ou aux défauts de coulée que ne le sont les essais de traction. Les courbes d'énergie d'impact en fonction de la limite ultime montrent des relations exponentielles, tandis que les courbes d'énergie d'impact en fonction de la déformation (%) affichent des relations linéaires pour tous les d'alliages, modifiés ou non, et peu importe la composition de l'alliage. À de faibles niveaux de Fe et à des taux de refroidissement élevés (0.4% Fe, espace interdendritique de 23 um), l'initiation et la propagation des fissures dans les alliages non modifiés 319, se produisent par le clivage des plaquettes de B-Al5FeSi (au lieu de leur décohésion de la matrice). La morphologie des plaquettes (individuelles ou embranchées) est importante pour déterminer la direction de propagation de la fissure. Les fissures se propagent aussi par la fracture du CuAl2 non dissous ou d'autres intermétalliques de cuivre, aussi bien que par les particules de Si fragmentées. Dans les alliages 319 modifiés au Sr, les fissures sont majoritairement initiées par la fragmentation ou le clivage des plaquettes perforées de la phase j3, en addition à celles des particules grossières de Si et des intermétalliques de cuivre non dissous. Dans les alliages A356.2, les fissures sont initiées principalement par la fracture des particules de Si ou leur détachement de la matrice de Al, alors que la propagation des fissures a lieu par coalescence des particules de Si fracturées, excepté quand les intermétalliques de P-Al5FeSi sont présents, auquel cas ce dernier a préséance. Dans le cas de modification au Sr, les fissures se propagent par la liaison des particules de Si fracturées / détachées, aussi bien que par les intermétalliques B-fer fragmentés. Dans les échantillons exhibant de basses énergies d'impact, l'initiation et la propagation des fissures se produisent principalement par le clivage des intermétalliques de B-fer.

Page generated in 0.0395 seconds