Spelling suggestions: "subject:"MAPE-K freedback loop"" "subject:"MAPE-K freedback hoop""
1 |
A Model-Based Approach to Engineer Self-Adaptive Systems with Guarantees / En modelbaserad metod för att utveckla självadaptiva system med garantierIftikhar, Muhammad Usman January 2017 (has links)
Modern software systems are increasingly characterized by uncertainties in the operating context and user requirements. These uncertainties are difficult to predict at design time. Achieving the quality goals of such systems depends on the ability of the software to deal with these uncertainties at runtime. A self-adaptive system employs a feedback loop to continuously monitor and adapt itself to achieve particular quality goals (i.e., adaptation goals) regardless of uncertainties. Current research applies formal techniques to provide guarantees for adaptation goals, typically using exhaustive verification techniques. Although these techniques offer strong guarantees for the goals, they suffer from well-known state explosion problem. In this thesis, we take a broader perspective and focus on two types of guarantees: (1) functional correctness of the feedback loop, and (2) guaranteeing the adaptation goals in an efficient manner. To that end, we present ActivFORMS (Active FORmal Models for Self-adaptation), a formally founded model-driven approach for engineering self-adaptive systems with guarantees. ActivFORMS achieves functional correctness by direct execution of formally verified models of the feedback loop using a reusable virtual machine. To efficiently provide guarantees for the adaptation goals with a required level of confidence, ActivFORMS applies statistical model checking at runtime. ActivFORMS supports on the fly changes of adaptation goals and updates of the verified feedback loop models that meet the changed goals. To demonstrate the applicability and effectiveness of the approach, we applied ActivFORMS in several domains: warehouse transportation, oceanic surveillance, tele assistance, and IoT building security monitoring. / Marie Curie CIG, FP7-PEOPLE-2011-CIG, Project ID: 303791
|
2 |
Applying Machine Learning to Reduce the Adaptation Space in Self-Adaptive Systems : an exploratory workButtar, Sarpreet Singh January 2018 (has links)
Self-adaptive systems are capable of autonomously adjusting their behavior at runtime to accomplish particular adaptation goals. The most common way to realize self-adaption is using a feedback loop(s) which contains four actions: collect runtime data from the system and its environment, analyze the collected data, decide if an adaptation plan is required, and act according to the adaptation plan for achieving the adaptation goals. Existing approaches achieve the adaptation goals by using formal methods, and exhaustively verify all the available adaptation options, i.e., adaptation space. However, verifying the entire adaptation space is often not feasible since it requires time and resources. In this thesis, we present an approach which uses machine learning to reduce the adaptation space in self-adaptive systems. The approach integrates with the feedback loop and selects a subset of the adaptation options that are valid in the current situation. The approach is applied on the simulator of a self-adaptive Internet of Things application which is deployed in KU Leuven, Belgium. We compare our results with a formal model based self-adaptation approach called ActivFORMS. The results show that on average the adaptation space is reduced by 81.2% and the adaptation time by 85% compared to ActivFORMS while achieving the same quality guarantees.
|
3 |
Applying Artificial Neural Networks to Reduce the Adaptation Space in Self-Adaptive Systems : an exploratory workButtar, Sarpreet Singh January 2019 (has links)
Self-adaptive systems have limited time to adjust their configurations whenever their adaptation goals, i.e., quality requirements, are violated due to some runtime uncertainties. Within the available time, they need to analyze their adaptation space, i.e., a set of configurations, to find the best adaptation option, i.e., configuration, that can achieve their adaptation goals. Existing formal analysis approaches find the best adaptation option by analyzing the entire adaptation space. However, exhaustive analysis requires time and resources and is therefore only efficient when the adaptation space is small. The size of the adaptation space is often in hundreds or thousands, which makes formal analysis approaches inefficient in large-scale self-adaptive systems. In this thesis, we tackle this problem by presenting an online learning approach that enables formal analysis approaches to analyze large adaptation spaces efficiently. The approach integrates with the standard feedback loop and reduces the adaptation space to a subset of adaptation options that are relevant to the current runtime uncertainties. The subset is then analyzed by the formal analysis approaches, which allows them to complete the analysis faster and efficiently within the available time. We evaluate our approach on two different instances of an Internet of Things application. The evaluation shows that our approach dramatically reduces the adaptation space and analysis time without compromising the adaptation goals.
|
Page generated in 0.0344 seconds