• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Methods to combine predictions from ensemble learning in multivariate forecasting

Conesa Gago, Agustin January 2021 (has links)
Making predictions nowadays is of high importance for any company, whether small or large, as thanks to the possibility to analyze the data available, new market opportunities can be found, risks and costs can be reduced, among others. Machine learning algorithms for time series can be used for predicting future values of interest. However, choosing the appropriate algorithm and tuning its metaparameters require a great level of expertise. This creates an adoption barrier for small and medium enterprises which could not afford hiring a machine learning expert to their IT team. For these reasons, this project studies different possibilities to make good predictions based on machine learning algorithms, but without requiring great theoretical knowledge from the users. Moreover, a software package that implements the prediction process has been developed. The software is an ensemble method that first predicts a value taking into account different algorithms at the same time, and then it combines their results considering also the previous performance of each algorithm to obtain a final prediction of the value. Moreover, the solution proposed and implemented in this project can also predict according to a concrete objective (e.g., optimize the prediction, or do not exceed the real value) because not every prediction problem is subject to the same constraints. We have experimented and validated the implementation with three different cases. In all of them, a better performance has been obtained in comparison with each of the algorithms involved, reaching improvements of 45 to 95%.
2

Applying Machine Learning to Reduce the Adaptation Space in Self-Adaptive Systems : an exploratory work

Buttar, Sarpreet Singh January 2018 (has links)
Self-adaptive systems are capable of autonomously adjusting their behavior at runtime to accomplish particular adaptation goals. The most common way to realize self-adaption is using a feedback loop(s) which contains four actions: collect runtime data from the system and its environment, analyze the collected data, decide if an adaptation plan is required, and act according to the adaptation plan for achieving the adaptation goals. Existing approaches achieve the adaptation goals by using formal methods, and exhaustively verify all the available adaptation options, i.e., adaptation space. However, verifying the entire adaptation space is often not feasible since it requires time and resources. In this thesis, we present an approach which uses machine learning to reduce the adaptation space in self-adaptive systems. The approach integrates with the feedback loop and selects a subset of the adaptation options that are valid in the current situation. The approach is applied on the simulator of a self-adaptive Internet of Things application which is deployed in KU Leuven, Belgium. We compare our results with a formal model based self-adaptation approach called ActivFORMS. The results show that on average the adaptation space is reduced by 81.2% and the adaptation time by 85% compared to ActivFORMS while achieving the same quality guarantees.
3

Applying Artificial Neural Networks to Reduce the Adaptation Space in Self-Adaptive Systems : an exploratory work

Buttar, Sarpreet Singh January 2019 (has links)
Self-adaptive systems have limited time to adjust their configurations whenever their adaptation goals, i.e., quality requirements, are violated due to some runtime uncertainties. Within the available time, they need to analyze their adaptation space, i.e., a set of configurations, to find the best adaptation option, i.e., configuration, that can achieve their adaptation goals. Existing formal analysis approaches find the best adaptation option by analyzing the entire adaptation space. However, exhaustive analysis requires time and resources and is therefore only efficient when the adaptation space is small. The size of the adaptation space is often in hundreds or thousands, which makes formal analysis approaches inefficient in large-scale self-adaptive systems. In this thesis, we tackle this problem by presenting an online learning approach that enables formal analysis approaches to analyze large adaptation spaces efficiently. The approach integrates with the standard feedback loop and reduces the adaptation space to a subset of adaptation options that are relevant to the current runtime uncertainties. The subset is then analyzed by the formal analysis approaches, which allows them to complete the analysis faster and efficiently within the available time. We evaluate our approach on two different instances of an Internet of Things application. The evaluation shows that our approach dramatically reduces the adaptation space and analysis time without compromising the adaptation goals.

Page generated in 0.115 seconds