1 |
Real-time data acquisition and processing of the Magnetic, Angular Rate and Gravity (MARG) sensorSaliaris, Ioannis R. 06 1900 (has links)
Approved for public release, distribution is unlimited / This research involves the development of a human-body motion tracking system constructed with the use of commercial off-the-shelf (COTS) compo-nents. The problem to be solved is that the data from the motion tracking sensors must be transmitted wirelessly in real time from a microcontroller to a server computer. Due to the fact that the microcontroller does not support a standard OS, widely used PCMCIA cards or USB wireless modules cannot be used. The wireless communication module chosen for this purpose is the DPAC airborne, a highly integrated 802.11b module that can be easily integrated with the microcon-troller. The evaluation of the module was completed in four stages. The first part was to initiate communication with the DPAC module. The second part was to establish communication between the DPAC module and a TCP server. The third part was to establish communication between the microcontroller and the DPAC module. The fourth part was to increase the baud-rate to the desired high value of 230,400 bps. The evaluation result indicates that the DPAC airborne module meets the wireless communication requirements of the motion tracking system. / Lieutenant, Hellenic Navy
|
2 |
Design and implementation of a DSP-based control interface unit (CIU)Kavousanos-Kavousanakis, Andreas 03 1900 (has links)
Approved for public release, distribution is unlimited / This research involves the development of a human-body motion tracking system constructed with the use of commercial off-the-shelf (COTS) components. The main component of the system investigated in this thesis is the Control Interface Unit (CIU). The CIU is a component designed to receive data from the magnetic, angular rate, and gravity (MARG) sensors and prepare them to be transmitted through a wireless configuration. A simple and effective algorithm is used to filter the sensor data without singularities, providing the measured attitude in the quaternion form for each human limb. Initial calibration of the MARG sensors is also performed with the use of linear calibrating algorithms. The testing and evaluation of the whole system is performed by MATLABʼ and SIMULINKʼ simulations, and by the realtime visualization using a human avatar designed with the X3D graphics specifications. Through this research, it is discovered that the MARG sensors had to be redesigned to overcome an erratum on the Honeywell magnetometer HMC1051Z data sheet. With the redesigned MARG sensors, the testing results showed that the CIU was performing extremely well. The overall motion tracking system is capable of tracking human body limb motions in real time. / Lieutenant Junior Grade, Hellenic Navy
|
Page generated in 0.0336 seconds