• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 16
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • Tagged with
  • 102
  • 102
  • 63
  • 63
  • 45
  • 28
  • 26
  • 23
  • 23
  • 17
  • 16
  • 15
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Função de partição para um campo fermiônico de dimensão de massa um e o halo de matéria escura das galáxias /

Costa, Richard Silva January 2020 (has links)
Orientador: Saulo Henrique Pereira / Resumo: Efeitos térmicos em teoria de campos são estudados pela chamada Teoria de Campos a Temperatura Finita. Nessa dissertação estudamos os efeitos de temperatura de um campo fermiônico de dimensão de massa um (MDO), que obedece à equação Klein-Gordon em vez da de Dirac. A função de partição foi obtida por meio do formalismo de tempo imaginário e o resultado foi o mesmo que o obtido para campos fermiônicos padrões de Dirac. Obtemos os limites de alta e baixa temperatura, sendo que o limite de baixas temperaturas é proposto como sendo o responsável por manter os halos de matéria escura da galáxia numa região da mesma ordem ou maior que o raio galáctico. Para uma partícula leve com massa de 1eV e densidade de 0.1 partículas por cm³, o valor da massa total da matéria escura devido a partículas MDO é da mesma ordem da massa de uma galáxia típica. Tal resultado pode explicar a matéria escura como sendo formada por partículas fermiônicas de dimensão de massa um. Por fim, comparamos as estimativas de densidade dessas partículas com densidades obtidas através de dados de simulações numéricas e concluímos que para valores de massa entre 0.1eV a 1eV, as partículas MDO produzem uma massa típica de galáxias desde que a densidade delas esteja no intervalo de 10^(-2) cm^(-3) a 10^(5)cm^(-3). / Abstract: Thermal effects in feld theory are studied by the so called Finite Temperature Field Theory. In this dissertation we study the effects of temperature of a mass dimension one (MDO) fermionic field, which obeys the Klein-Gordon equation rather than the Dirac equation. The partition function was obtained via the imaginary time formalism and the result was the same as for the a Dirac fermionic field. We obtained the high and low temperature limits, and the latter is proposed as being responsable for keeping the dark matter halos of galaxies in a region greater than or of the same order as a typical galaxy radius. For a light particle of about 1eV and density of 0.1 particles per cm3 , the value of the total dark mass due to MDO particles is of the same order of a typical galaxy. Such result can explain dark matter as being formed by fermionic particles. Lastly, we compared those particles densities estimates with the ones obtained numeric simulation data and conclude that for mass values between 0.1eV and 1eV, the MDO particles yield a typical galaxy mass as long as their density is in the 10−2 cm−3 to 105 cm−3 interval / Mestre
52

Probing Self-Interacting Dark Matter Models with Neutrino Telescopes / Testando modelos de matéria escura auto-interagente com telescópios de neutrinos

Sotelo, Denis Stefan Robertson 08 December 2017 (has links)
In this thesis we studied dark matter models with strong self-interactions, typically known as self-interacting dark matter (SIDM). This kind of models constitute a promising solution to the tension between small scale structure observations and predictions assuming the standard case of collisionless cold dark matter (CDM) while keeping the success of the standard cosmological model, LambdaCDM, at large scales. The presence of strong self-interactions can increase the dark matter capture and annihilation in astrophysical objects like our sun, enhancing the potential of indirect detection signals. We used the high energy neutrinos produced by such annihilations to probe SIDM models. We established strong constraints on SIDM with velocity independent cross section by comparing the expected neutrino signal with the results of the IceCube-79 dark matter search. Also, we determined the sensitivity for the IceCube-DeepCore and PINGU detectors for SIDM with a velocity dependent self-interacting cross section (vdSIDM). Most of its relevant parameter space can be tested with the three years of data already collected by IceCube-DeepCore, complementing results from direct detection experiments and other indirect detection studies. / Nesta tese investigamos modelos de matéria escura com auto-interações fortes, conhecidos tipicamente como matéria escura auto-interagente (SIDM). Este tipo de modelos constituem uma solução promissora à tensão entre as observações de estrutura a pequena escala e as previsões assumindo o caso padrão de matéria escura fria não colisional (CDM), enquanto se mantêm o sucesso do modelo cosmológico padrão, LambdaCDM, a grandes escalas. A presença de auto-interações fortes podem aumentar a captura e a aniquilação da matéria escura em objetos astrofísicos como o nosso sol, aumentando o potencial de sinais de detecção indireta. Usamos o sinal de neutrinos de alta energia produzidos por essas aniquilações para explorar modelos de SIDM. Estabelecemos fortes vínculos em modelos de SIDM com seção de auto-interação independente da velocidade comparando o sinal de neutrinos esperado com os resultados de busca de matéria escura do IceCube-79. Também, determinamos a sensibilidade dos detectores IceCube-DeepCore e PINGU para modelos de SIDM com uma seção de auto-interação dependente da velocidade (vdSIDM). A maior parte do espaço de parâmetros de interesse pode ser testado com os três anos de dados já coletados pelo IceCube-DeepCore, complementando os resultados de experimentos de detecção direta e outras an análises de detecção indireta.
53

Tachyon Scalar Field Cosmology / Cosmologia de Campos Escalares Taquionicos

Castro, Fábio Chibana de 30 March 2017 (has links)
In this work we test a cosmological model with an interaction between dark energy and dark matter, where a tachyon scalar field plays the role of dark energy. With that in mind, we developed a numerical code that solves the background equations and extracts the cosmological parameters and we compared the results of the interacting tachyon model with those of other dark energy candidates. Our results show that the model indeed explains the observational data and has interesting cosmological properties, but might face challenges when compared to other dark energy candidates. / Neste trabalho testamos um modelo cosmológico com uma interação entre energia escura e matéria escura, onde um campo escalar taquiônico desempenha o papel da energia escura. Para isso, desenvolvemos um código computacional que resolve as equações numericamente e vincula os parâmetros cosmológicos e, assim, comparamos os resultados do modelo taquiônico interagente com os de outros candidatos à energia escura. Nossas análises mostram que o modelo, de fato, consegue explicar os dados observacionais, além de possuir propriedades cosmológicas interessantes, mas apresenta dificuldades quando comparado a outros modelos de energia escura.
54

Interacting dark energy models in Cosmology and large-scale structure observational tests / Modelos de energia escura com interação em Cosmologia e testes observacionais com estruturas em grande escala

Marcondes, Rafael José França 23 September 2016 (has links)
Modern Cosmology offers us a great understanding of the universe with striking precision, made possible by the modern technologies of the newest generations of telescopes. The standard cosmological model, however, is not absent of theoretical problems and open questions. One possibility that has been put forward is the existence of a coupling between dark sectors. The idea of an interaction between the dark components could help physicists understand why we live in an epoch of the universe where dark matter and dark energy are comparable in terms of energy density, which can be regarded as a strange coincidence given that their time evolutions are completely different. Dark matter and dark energy are generally treated as perfect fluids. Interaction is introduced when we allow for a non-zero term in the right-hand side of their individual energy-momentum tensor conservation equations. We proceed with a phenomenological approach to test models of interaction with observations of redshift-space distortions. In a flat universe composed only of these two fluids, we consider separately two forms of interaction, through terms proportional to the densities of both dark energy and dark matter. An analytic expression for the growth rate approximated as f = Omega^gamma, where Omega is the percentage contribution from the dark matter to the energy content of the universe and gamma is the growth index, is derived in terms of the interaction strength and of other parameters of the model in the first case, while for the second model we show that a non-zero interaction cannot be accommodated by the index growth approximation. The successful expressions obtained are then used to compare the predictions with growth of structure observational data in a Markov Chain Monte Carlo code and we find that the current growth data alone cannot impose constraints on the interaction strength due to their large uncertainties. We also employ observations of galaxy clusters to assess their virial state via the modified Layzer-Irvine equation in order to detect signs of an interaction. We obtain measurements of observed virial ratios, interaction strength, rest virial ratio and departure from equilibrium for a set of clusters. A compounded analysis indicates an interaction strength of 0.29^{+2.25}_{-0.40}, compatible with no interaction, but a compounded rest virial ratio of 0.82^{+0.13}_{-0.14}, which means a 2 sigma confidence level detection. Despite this tension, the method produces encouraging results while still leaves room for improvement, possibly by removing the assumption of small departure from equilibrium. / A cosmologia moderna oferece um ótimo entendimento do universo com uma precisão impressionante, possibilitada pelas tecnologias modernas das gerações mais novas de telescópios. O modelo cosmológico padrão, porém, não é livre de problemas do ponto de vista teórico, deixando perguntas ainda sem respostas. Uma possibilidade que tem sido proposta é a existência de um acoplamento entre setores escuros. A ideia de uma interação entre os componentes escuros poderia ajudar os físicos a entender por que vivemos em uma época do universo na qual a matéria escura e a energia escura são comparáveis em termos de densidades de energia, o que pode ser considerado uma estranha coincidência dado que suas evoluções com o tempo são completamente diferentes. Matéria escura e energia escura são geralmente tratadas como fluidos perfeitos. A interação é introduzida ao permitirmos um tensor não nulo no lado direito das equações de conservação dos tensores de energia-momento. Prosseguimos com uma abordagem fenomenológica para testar modelos de interação com observações de distorções no espaço de redshift. Em um universo plano composto apenas por esses dois fluidos, consideramos, separadamente, duas formas de interação, através de termos proporcionais às densidades de energia escura e de matéria escura. Uma expressão analítica para a taxa de crescimento aproximada por f = Omega^gamma, onde Omega é a contribuição percentual da matéria escura para o conteúdo do universo e gamma é o índice de crescimento, é deduzida em termos da interação e de outros parâmetros do modelo no primeiro caso, enquanto para o segundo caso mostramos que uma interação não nula não pode ser acomodada pela aproximação do índice de crescimento. As expressões obtidas são então utilizadas para comparar as previsões com dados observacionais de crescimento de estruturas em um programa para Monte Carlo via cadeias de Markov. Concluímos que tais dados atuais por si só não são capazes de restringir a interação devido às suas grandes incertezas. Utilizamos também observações de aglomerados de galáxias para analisar seus estados viriais através da equação de Layzer-Irvine modificada a fim de detectar sinais de interação. Obtemos medições de taxas viriais observadas, constante de interação, taxa virial de equilíbrio e desvio do equilíbrio para um conjunto de aglomerados. Uma análise combinada indica uma constante de interação 0.29^{+2.25}_{-0.40}, compatível com zero, mas uma taxa virial de equilíbrio combinada de 0.82^{+0.13}_{-0.14}, o que significa uma detecção em um intervalo de confiança de 2 sigma. Apesar desta tensão, o método produz resultados encorajadores enquanto ainda permite melhorias, possivelmente pela remoção da suposição de pequenos desvios do equilíbrio.
55

Halos de matéria escura e campos escalares / Dark matter halos and scalar fields

Brandão, Rafael Ribeiro 04 November 2005 (has links)
Cerca de 25% do conteúdo energético do universo se encontra sob uma forma de natureza ainda não determinada e é conhecida pelo nome de matéria escura. Desde as primeiras especulações acerca de sua existência (Zwicky ~ 1933), vários modelos foram propostos na tentativa de justificar os dados observacionais encontrados mas, até hoje, nenhum deles foi capaz de cumprir essa tarefa a contento. Nesta dissertação, apresentaremos uma breve discussão desses modelos, além de propor um novo, baseado na idéia de que tanto a matéria escura quanto a energia escura possam ser compostas pelo campo escalar de Born-Infeld. / Nearly twenty five percent of the energetic content of the universe appears in a form that is still unknown and is named dark matter. Since the first speculations about its existence (Zwicky ~1933), many models have been proposed trying to justify all the observed data but, until now, none of them has been able to solve this problem. In this monography, we will present a brief discussion about these models and propose a new one, based on the idea that both dark matter and dark energy could be the Born Infeld scalar field.
56

Estudo da possibilidade de detecção da matéria escura com telescópios Cherenkov / Study of the possibility of dark matter detection with Cherenkov telescopes

Marcomini, Jéssica Arab 18 June 2015 (has links)
A existência de matéria escura é sustentada pela observação de efeitos gravitacionais sobre a matéria comum. A partir desses efeitos, com medidas de curvas de rotação e lentes gravitacionais, é possível calcular a densidade de matéria escura necessária para causa-los. Para descrever o comportamento observado, foram criados alguns modelos teóricos, porém a natureza das partículas que constituem matéria escura continua desconhecida. Determinar propriedades como massa e seção de choque da possível partícula de matéria escura é fundamental para o entendimento da natureza de seus efeitos sobre matéria bariônica. No âmbito experimental, os Telescópios Cherenkov medem a radiação gama proveniente do cosmo com energia entre GeV &#8212TeV de forma que uma possível interação (como exemplo a aniquilação de partículas de matéria escura) poderia ter seu resultado final de raios gama detectado em um dos experimentos de observação indireta. Neste trabalho de mestrado analisamos os conceitos de matéria escura a partir de um modelo específico de partículas WIMPs, o neutralino. Estudamos galáxias anãs esferoidais como possíveis fontes do sinal de raios gama proveniente da aniquilação de neutralinos. Para o entendimento dos cálculos, reproduzimos os resultados de dois experimentos importantes para a área, pertencentes aos telescópios VERITAS e MAGIC, validando as implementações realizadas. Estudamos também galáxias anãs esferoidais observadas pelo experimento FERMI-LAT para as quais limites superiores de fluxo foram determinados. Fizemos uso dessas medidas e extrapolamos os espectros de energias para o intervalo a ser observado pelo CTA. Utilizando curvas de sensitividade realistas para uma possível configuração do CTA, determinamos a potencialidade de detectação de matéria escura pelo CTA de 18 fontes estudados pelo FERMI-LAT. A partir dos resultados obtidos com a simulação do Observatório, podemos concluir quais fontes proporcionam melhores avanços para as pesquisas envolvendo matéria escura com o modelo escolhido. / The existence of dark matter is sustained by the observation of its gravitational efects on ordinary matter. By studying these efects, with rotation curves and gravitational lensing measurements, it is possible to calculate the dark matter density necessary to cause them. Theoretical models were created to describe the observed behavior, however the nature of the constituent particles is still unknown. Determining the particles\' properties such as mass and cross section is fundamental for the understanding of the nature of its efects on baryonic matter. On the experimental scope, Cherenkov Telescopes measure the gamma radiation coming from the cosmo with an energy between GeV &#8212TeV making it possible for an interaction to have its final product detected in one of these experiments. In this dissertation, we present an analysis of dark matter concepts considering a specific model of WIMPs particles, represented by the neutralino. We studied dwarf spheroidal galaxies as possible gamma-ray flux sources originated from the neutralino annihilation. We reproduced the results on annihilation cross section of two important experiments for this particular field (VERITAS and MAGIC), validating the codes implemented. This was perfomed with the objective of understanding the calculus involved. We studied dwarf spheroidal galaxies observed by the FERMI-LAT experiment for which upper limits flux were determined. We used these measurements and extrapolated the energy spectrum to the one to be observed by CTA. With realistic sensitivity curves for a possible CTA configuration, we determined the potencial for a dark matter detection for 18 sources studied by FERMI-LAT. With the results obtained with the Observatory simulation, we were able to conclude which of these sources represent improvements for dark matter researches with the specific model described.
57

Estudo da possibilidade de detecção da matéria escura com telescópios Cherenkov / Study of the possibility of dark matter detection with Cherenkov telescopes

Jéssica Arab Marcomini 18 June 2015 (has links)
A existência de matéria escura é sustentada pela observação de efeitos gravitacionais sobre a matéria comum. A partir desses efeitos, com medidas de curvas de rotação e lentes gravitacionais, é possível calcular a densidade de matéria escura necessária para causa-los. Para descrever o comportamento observado, foram criados alguns modelos teóricos, porém a natureza das partículas que constituem matéria escura continua desconhecida. Determinar propriedades como massa e seção de choque da possível partícula de matéria escura é fundamental para o entendimento da natureza de seus efeitos sobre matéria bariônica. No âmbito experimental, os Telescópios Cherenkov medem a radiação gama proveniente do cosmo com energia entre GeV &#8212TeV de forma que uma possível interação (como exemplo a aniquilação de partículas de matéria escura) poderia ter seu resultado final de raios gama detectado em um dos experimentos de observação indireta. Neste trabalho de mestrado analisamos os conceitos de matéria escura a partir de um modelo específico de partículas WIMPs, o neutralino. Estudamos galáxias anãs esferoidais como possíveis fontes do sinal de raios gama proveniente da aniquilação de neutralinos. Para o entendimento dos cálculos, reproduzimos os resultados de dois experimentos importantes para a área, pertencentes aos telescópios VERITAS e MAGIC, validando as implementações realizadas. Estudamos também galáxias anãs esferoidais observadas pelo experimento FERMI-LAT para as quais limites superiores de fluxo foram determinados. Fizemos uso dessas medidas e extrapolamos os espectros de energias para o intervalo a ser observado pelo CTA. Utilizando curvas de sensitividade realistas para uma possível configuração do CTA, determinamos a potencialidade de detectação de matéria escura pelo CTA de 18 fontes estudados pelo FERMI-LAT. A partir dos resultados obtidos com a simulação do Observatório, podemos concluir quais fontes proporcionam melhores avanços para as pesquisas envolvendo matéria escura com o modelo escolhido. / The existence of dark matter is sustained by the observation of its gravitational efects on ordinary matter. By studying these efects, with rotation curves and gravitational lensing measurements, it is possible to calculate the dark matter density necessary to cause them. Theoretical models were created to describe the observed behavior, however the nature of the constituent particles is still unknown. Determining the particles\' properties such as mass and cross section is fundamental for the understanding of the nature of its efects on baryonic matter. On the experimental scope, Cherenkov Telescopes measure the gamma radiation coming from the cosmo with an energy between GeV &#8212TeV making it possible for an interaction to have its final product detected in one of these experiments. In this dissertation, we present an analysis of dark matter concepts considering a specific model of WIMPs particles, represented by the neutralino. We studied dwarf spheroidal galaxies as possible gamma-ray flux sources originated from the neutralino annihilation. We reproduced the results on annihilation cross section of two important experiments for this particular field (VERITAS and MAGIC), validating the codes implemented. This was perfomed with the objective of understanding the calculus involved. We studied dwarf spheroidal galaxies observed by the FERMI-LAT experiment for which upper limits flux were determined. We used these measurements and extrapolated the energy spectrum to the one to be observed by CTA. With realistic sensitivity curves for a possible CTA configuration, we determined the potencial for a dark matter detection for 18 sources studied by FERMI-LAT. With the results obtained with the Observatory simulation, we were able to conclude which of these sources represent improvements for dark matter researches with the specific model described.
58

Possibilidade de um sinal de 130 GeV de matéria escura fermiônica

Franarin,Tarso Henz January 2014 (has links)
Há evidência para uma linha espectral em E ≈ 130 GeV nos dados do Fermi-LAT, que pode ser explicada por partículas de matéria escura aniquilando-se em fótons. Revisamos um modelo de matéria escura que consiste em um férmion de Dirac singleto e um escalar singleto. O escalar implementa a quebra espontânea de simetria no setor escuro, além de ser responsável pela comunicação entre as partículas de matéria escura e do Modelo Padrão através do acoplamento com o Higgs. Essas interações são suprimidas pela mistura do escalar com o Higgs. Assim, a matéria escura fermiônica singleta é naturalmente uma partícula massiva que interage fracamente (WIMP, na sigla em inglês) e pode explicar a densidade de relíquia observada. Esse modelo não consegue produzir o sinal identificado nos dados do Fermi-LAT, então propomos uma modificação. Introduzimos um escalar multipleto que carrega carga elétrica e acopla-se ao escalar singleto, e conseguimos produzir o sinal. O consequente aumento da razão de ramificação do processo h → γγ é consistente com medidas do experimento CMS. / There is evidence for a spectral line at E ≈ 130 GeV in the Fermi-LAT data that can be explained as dark matter particles annihilating into photons. We review a dark matter model that consists in a singlet Dirac fermion and a singlet scalar. The scalar implements the spontaneous symmetry breaking in the dark sector, and is responsible for the communication between dark matter and Standard Model particles through a coupling to the Higgs. These interactions are supressed by the mixing between the scalar and the Higgs. Therefore, the singlet fermionic dark matter is naturally a weakly interacting massive particle (WIMP) and can explain the observed relic density. This model cannot produce the signal identified in the Fermi-LAT data, so we propose a modification. We introduce a scalar multiplet that carries electric charge and couples to the singlet scalar, and succeed in producing the signal. The resulting increase of the branching ratio of the h → γγ process is consistent with measurements from the CMS experiments.
59

Reduzindo o setor escuro do Universo: uma nova cosmologia acelerada com criação de matéria escura fria / Reducing the Dark Sector of the Universe: A New Accelerating Cosmology with Cold Dark Matter Creation

Oliveira, Felipe Andrade 03 May 2010 (has links)
Nesta dissertação nós propomos uma nova cosmologia relativística acelerada cujo conteúdo material é composto apenas por bárions e matéria escura fria. A não existência de uma componente de energia escura implica que nosso cenário é baseado numa redução do chamado setor escuro do universo. Neste modelo, o presente estágio acelerado é determinado pela pressão negativa descrevendo a produção de partículas de matéria escura fria induzida pelo campo gravitacional variável do universo. Para um universo espacialmente plano ($\\Omega _ + \\Omega _b = 1$), como previsto pela inflação, este tipo de cenário possui somente um parâmetro livre e a equação diferencial governando a evolução do fator de escala é exatamente a mesma do modelo $\\Lambda$CDM. Neste caso, encontramos que o parâmetro efetivo de densidade de matéria é $\\Omega_= 1 - \\alpha$, onde $\\alpha$ é um par\\^metro constante ligado à taxa de criação de matéria escura fria. Aplicando um teste estatístico $\\chi^2$ para os dados de Supernovas do tipo Ia (Union Sample 2008), limitamos os par\\^metros livres do modelo nos casos espacialmente plano e com curvatura. Em particular, encontramos que para o caso plano $\\alpha \\sim 0.71$, de forma que $\\Omega_ \\sim 0.29$, como tem sido inferido independentemente por lentes gravitacionais fracas, estrutura de grande escala, radiação cósmica de fundo e outras observações complementares. / In this dissertation we propose a new accelerating relativistic cosmology whose matter content is composed only by baryons and cold dark matter. The nonexistence of a dark energy component implies that our scenario is based on a reduction of the so-called dark sector of the Universe. The present accelerating stage in this model is powered by the negative pressure des\\-cribing the cold dark matter particle production induced by the variable gravitational field of the Universe. For a spatially flat universe ($\\Omega _ + \\Omega _b = 1$), as predicted by inflation, this kind of scenario has only one free parameter and the differential equation governing the evolution of the scale factor is exactly the same of the $\\Lambda$CDM model. In this case, we find that the effectively observed matter density parameter is $\\Omega_ = 1 - \\alpha$, where $\\alpha$ is a constant parameter related to the cold dark matter creation rate. By applying a $\\chi^2$ statistical test for Supernovae type Ia data (Union Sample 2008), we constrain the free parameters of the model for spatially flat and curved cases. In particular, to the flat case we find $\\alpha \\sim 0.71$, so that $\\Omega_ \\sim 0.29$, as independently inferred from weak gravitational lensing, large scale structure, cosmic background radiation, and other complementary observations.
60

Vinculando modelos de energia escura com idade de galáxias em altos redshifts / Constraint Dark Energy Models with High-Redshifts Galaxy Ages

Bachega, Riis Rhavia Assis 20 August 2014 (has links)
Uma série de observações advindas da medida da distância de supernovas tipo IA, idade das estrelas mais antigas, anisotropias da radiação cósmica de fundo, entre outras, evidenciam que o universo está passando por uma fase de expansão acelerada. Essa expansão está sendo causada por uma componente misteriosa denominada energia escura, que representa cerca de $70\\%$ do conteúdo total do universo, e cuja natureza é desconhecida. Para descrever a energia escura vários modelos têm sido propostos, entre eles, podemos destacar a energia do vácuo (constante cosmológica) e um campo escalar dinâmico (quintessência). Também são considerados modelos em que a energia escura interage com outro componente misterioso, a matéria escura. Existem vários testes observacionais para vincular os parâmetros desses modelos. Nesta dissertação, exploraremos um método baseado na idade de galáxias em altos redshifts e na idade do universo, conhecido em inglês como lookback time. / A number of observations arising from the measurement of distance of type IA Supernovae, age of oldest stars, anisotropy of cosmic microwave background, among others, show that the universe is undergoing a phase of accelerated expansion. This expansion is being caused by a mysterious component called dark energy, which represents about $70\\%$ of the total content of the universe, and whose nature is unknown. To describe the various dark energy models have been proposed, among them we highlight the vacuum energy (cosmological constant), and a dynamic scalar field (quintessence). Are also considered models in which dark energy interacts with another mysterious component, the dark matter. There are several observational tests to constraint the parameters of these models. In this dissertation, we explore a method based on age of galaxies at high redshift and the age of the universe, known as lookback time.

Page generated in 0.0368 seconds