• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Oxydation catalytique des composés organiques volatils à l’aide de catalyseurs de type oxyde / Catalytic oxidation of Volatile Organic Compounds Over Composite Metal Catalysts

Wang, Chao 19 December 2016 (has links)
Dans ce travail de recherche, des oxydes mixtes dopés par des métaux nobles ont été préparés et mis en œuvre dans la réaction d'oxydation catalytique du chlorure de vinyle (VC). Les catalyseurs d'oxyde composite de Co-Ce ont été préparés par des procédés sol-gel et testés pour l'activité d'oxydation du VC. L'analyse XPS a certifié que l'introduction de Ce favorisait la présence d'espèces de Co2 + et de Ce3 +, ce qui modifie l'environnement de coordination du réseau d'oxygène et génère plus de vacations d'oxygène. Les oxydes de cobalt modifiés par Ru ont été préparés et étudiés pour l'oxydation du VC. L'analyse XPS montre que le Ru4 + et le Co2 + modifie la concentration des espèces oxygènes sur la surface. Une proportion relative élevée de Co2+ et de Ru4+ perturbe également les lacunes en oxygène. Cela impacte l'activité catalytique et diminue la quantité de sous-produits chlorés. Des mousses cellulaires mésostructurées de phosphate de cobalt-SiO2 (CoPO-MCFs) ont été synthétisées avec succès par la méthode de croissance in situ. Les analyses XPS confirment une augmentation d'espèces d'oxygène de surface pour ce système catalytique. L'énergie apparente d'activation confirme cette tendance. L'influence de la morphologie des particules de Co3O4, sur l'activité catalytique du méthyl benzène et du chlorure de vinyle a été étudiée. Le Co3O4 cubique a montré une meilleure activité et une meilleure stabilité que celle de Co3O4 sphérique. La structure cubique, avec Co2 + exposée à la surface, est le site actif de l'oxydation / In this research works, composite oxides, noble metal supported oxides and noble supported MCFs were prepared, and their catalytic performances were investigated for the catalytic oxidation of vinyl chloride (VC). The Co-Ce composite oxide catalysts were prepared by citrate sol-gel methods, and tested for the activity of VC oxidation. The catalyst with high performance is the molar ratio of Co/Ce=7:3. The XPS analyse certified that the Ce introduction favored the presence of Co2+ and Ce3+ species, which changed the coordination environment of the oxygen lattice and generated more oxygen vacancies. At last, this catalyst exhibited a good performance and stability during 110 h of time on stream at 300 oC. Ru-modified cobalt oxides were prepared and studied for the VC oxidation. The XPS analyse certified that the Ru4+ will be in synergy with Co2+ concentration and this would also change the chemical coordination of oxygen on the surface. High relative proportion of Co2+ and Ru4+ will also devote to oxygen defects or vacancies. This would increased the catalytic activity and decrease the amount of chlorinated by-products.A novel heterostructured material, cobalt phosphate-SiO2 mesostructured cellular foams (CoPO-MCFs), was successfully synthesized by the in-situ growth method. The XPS confirmed a higher amount of surface oxygen species. The activation energy calculated from Arrhenius plots showed a lower value for VC oxidation. The influence of Co3O4 morphology, including cube and sphere, on catalytic activity of methylbenzene and vinyl chloride was studied. The Co3O4 cube had shown better activity and stability than that of the Co3O4 sphere. The cube structure, with Co2+ exposed on the surface, acted as the active site of the oxidation
2

FRF Based Experimental – Analytical Dynamic Substructuring Using Transmission Simulator

Konjerla, Krishna Chaitanya January 2016 (has links)
In dynamic substructuring, a complex structure is divided into multiple substructures that can be analysed individually and these individual component responses are coupled together to obtain the global response of the whole structure. Dynamic substructuring can be performed on substructure models that are identified either experimentally or analytically. For dynamic substructuring to be successful, it is very essential to have the precise information of the connection points or the interfaces between the substructures. The method has been extensively used with analytical models in most of the available standard finite element software packages where the information about all degrees of freedom is known. However, it is difficult to get the information about all connection degrees of freedom from the measurements and experimental substructuring is thus limited in its use compared to analytical substructuring. In order to overcome these difficulties, the Transmission Simulator method commonly also known as Modal Constraints for Fixture and Subsystem method can be used. In this method, an additional fixture called Transmission Simulator which is available both physically and analytically, is attached to the substructures at the interfaces and their respective responses are measured. The substructures could be analytical as well as experimental. The coupling is done by constraining the transmission simulator on the substructures to have the same motion and the effect of the transmission simulator is later removed from the coupled structure by subtracting the analytical transmission simulator model. This method has been successfully implemented for Component Mode Synthesis and Frequency Based Substructuring for structures with multiple connection points at a single location. In this thesis work, frequency response function based experimental–analytical dynamic substructuring using the transmission simulator is performed on a rear subframe and rear differential unit assembly of a Volvo XC90 car where the differential unit is connected to the subframe at three locations. The aim of this work is to verify the Transmission Simulator Method for multiple location connection points using the frequency response functions and build confidence on the methodology in order to be used for future work at Volvo Car Corporation.
3

From Physicochemical Features to Interdependency Networks : A Monte Carlo Approach to Modeling HIV-1 Resistome and Post-translational Modifications

Kierczak, Marcin January 2009 (has links)
The availability of new technologies supplied life scientists with large amounts of experimental data. The data sets are large not only in terms of the number of observations, but also in terms of the number of recorded features. One of the aims of modeling is to explain a given phenomenon in possibly the simplest way, hence the need for selection of suitable features. We extended a Monte Carlo-based approach to selecting statistically significant features with discovery of feature interdependencies and used it in modeling sequence-function relationships in proteins. Our approach led to compact and easy-to-interpret predictive models. First, we represented protein sequences in terms of their physicochemical properties. This was followed by our feature selection and discovery of feature interdependencies. Finally, predictive models based on e.g., decision trees or rough sets were constructed. We applied the method to model two important biological problems: 1) HIV-1 resistance to reverse transcriptase-targeted drugs and 2) post-translational modifications of proteins. In the case of HIV resistance, we were not only able to predict whether the mutated protein is resistant to a drug or not, but we also suggested some new, previously neglected, mutations that possibly contribute to drug resistance. For all these mutations we proposed probable molecular mechanisms of action using literature and 3D structure studies. In the case of predicting PTMs, we built high accuracy models of modifications. In comparison to other methods, we were able to resolve whether the closest neighborhood of a residue (the nanomer) is sufficient to determine its modification status. Importantly, the application of our method yields networks of interdependent physicochemical properties of amino acids that show how these properties collaborate in establishing a given modification. We believe that the presented methods will help researchers to analyze a large class of important biological problems and will guide them in their research.

Page generated in 0.036 seconds