• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 8
  • 4
  • 3
  • 3
  • 3
  • 1
  • Tagged with
  • 66
  • 41
  • 36
  • 24
  • 20
  • 13
  • 13
  • 11
  • 10
  • 10
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Otimização multidisciplinar em projeto de asas flexíveis utilizando metamodelos / Multidisciplinary design optimization of flexible wings using metamodels

Caixeta Júnior, Paulo Roberto 11 August 2011 (has links)
A Otimização Multidisciplinar em Projeto (em inglês, Multidisciplinary Design Optimization - MDO) é uma ferramenta de projeto importante e versátil e seu uso está se expandindo em diversos campos da engenharia. O foco desta metodologia é unir disciplinas envolvidas no projeto para que trabalhem suas variáveis concomitantemente em um ambiente de otimização, para obter soluções melhores. É possível utilizar MDO em qualquer fase do projeto, seja a fase conceitual, preliminar ou detalhada, desde que os modelos numéricos sejam ajustados às necessidades de cada uma delas. Este trabalho descreve o desenvolvimento de um código de MDO para o projeto conceitual de asas flexíveis de aeronaves, com restrição quanto ao fenômeno denominado flutter. Como uma ferramenta para o projetista na fase conceitual, os modelos numéricos devem ser razoavelmente precisos e rápidos. O intuito deste estudo é analisar o uso de metamodelos para a previsão do flutter de asas de aeronaves no código de MDO, ao invés de um modelo convencional, o que pode alterar significativamente o custo computacional da otimização. Para este fim são avaliados três técnicas diferentes de metamodelagem, que foram escolhidas por representarem duas classes básicas de metamodelos, a classe de métodos de interpolação e a de métodos de aproximação. Para representá-las foram escolhidos o método de interpolação por funções de base radial e o método de redes neurais artificiais, respectivamente. O terceiro método, que é considerado um método híbrido dos dois anteriores, é chamado de redes neurais por funções de bases radiais e é uma tentativa de acoplar as características de ambos em um único metamodelo. Os metamodelos são preparados utilizando um código para solução aeroelástica baseado no método dos elementos finitos acoplado com um modelo aerodinâmico linear de faixas. São apresentados resultados de desempenho dos três metamodelos, de onde se pode notar que a rede neural artificial é a mais adequada para previsão de flutter. O processo de MDO é realizado com o uso de um algoritmo genético multi-objetivo baseado em não-dominância, cujos objetivos são a maximização da velocidade crítica de flutter e a minimização da massa estrutural. Dois estudos de caso são apresentados para avaliar o desempenho do código de MDO, revelando que o processo global de otimização realiza de fato a busca pela fronteira de Pareto. / The Multidisciplinary Design Optimization, MDO, is an important and versatile design tool and its use is spreading out in several fields of engineering. The focus of this methodology is to put together disciplines involved with the design to work all their variables concomitantly, at an optimization environment to obtain better solutions. It is possible to use MDO in any stage of the design process, that is in the conceptual, preliminary or detailed design, as long as the numerical models are fitted to the needs of each of these stages. This work describes the development of a MDO code for the conceptual design of flexible aircraft wings, with restrictions regarding the phenomenon called flutter. As a tool for the designer at the conceptual stage, the numerical models must be fairly accurate and fast. The aim of this study is to analyze the use of metamodels for the flutter prediction of aircraft wings in the MDO code, instead of a conventional model itself, what may affect significantly the computational cost of the optimization. For this purpose, three different metamodeling techniques have been evaluated, representing two basic metamodel classes, that are, the interpolation and the approximation class. These classes are represented by the radial basis function interpolation method and the artificial neural networks method, respectively. The third method, which is considered as a hybrid of the other two, is called radial basis function neural networks and is an attempt of coupling the features of both in single code. Metamodels are prepared using an aeroelastic code based on finite element model coupled with linear aerodynamics. Results of the three metamodels performance are presented, from where one can note that the artificial neural network is best suited for flutter prediction. The MDO process is achieved using a non-dominance based multi-objective genetic algorithm, whose objectives are the maximization of critical flutter speed and minimization of structural mass. Two case studies are presented to evaluate the performance of the MDO code, revealing that overall optimization process actually performs the search for the Pareto frontier.
42

Projeto conceitual e análise de desempenho do sistema de admissão de ar em uma aeronave não convencional de combate / Conceptual design and performance analysis of the air intake system in a non-conventional fighter aircraft

Bravo Mosquera, Pedro David 22 May 2017 (has links)
A concepção de aeronaves não convencionais a fim de alcançar um determinado desempenho ou melhoria operacional é sem dúvida um dos objetivos mais importantes da engenheira aeronáutica. Tais melhorias envolvem: redução de arrasto, redução da seção transversal, redução de ruído, redução da distância de decolagem e pouso, aumento da eficiência aerodinâmica, aumento da carga útil, entre outros. Por tanto, métodos de otimização multidisciplinar se tornaram em ferramentas muito úteis para aprimorar o projeto conceitual destas aeronaves. Neste contexto, este trabalho teve como objetivo o desenvolvimento do projeto conceitual de uma aeronave não convencional de combate e a análise de desempenho aerodinâmico do seu sistema de admissão de ar (Intake), tendo como principal característica, estar localizado na parte superior da fuselagem da aeronave (Dorsal Intake). O delineamento conceitual foi desenvolvido através da implementação de metodologias de otimização multidisciplinar de projeto (MDO) na fase de projeto paramétrico, integrando conceitos como: entropia estatística, desdobramento da função qualidade (QFD) e análise de restrições. Além disso, foram usados métodos analíticos e teóricos, ferramentas de desenho assistido por computador (CAD) e simulações da dinâmica dos fluidos computacionais (CFD) para otimizar e obter a configuração final da aeronave. Posteriormente, 5 configurações de asa delta foram selecionadas para avaliar as mudanças de desempenho do dorsal intake sob a influência aerodinâmica das superfícies principais da aeronave (Asa e Fuselagem), em regimes de voo subsônico (Mach = 0.4), transônico (Mach = 0.9) e supersônico (Mach = 1.7; 2) a diversos ângulos de ataque (De α = 10º a α = 30º ). Os resultados encontrados neste trabalho foram avaliados em separado, subsequentemente foram integrados, a fim de obter a nova concepção de aeronave não convencional de combate; a aplicação de MDO permitiu estimar as variáveis de projeto ideais para o desenvolvimento do projeto da aeronave, em relação a sua missão. Em contrapartida, os resultados da integração intake-estrutura mostram que apropriadas características de desempenho e compatibilidade foram mantidas durante as fases de voo subsônicas, para as 5 configurações de asa. No entanto, para velocidades transônicas, a configuração canard apresentou um acréscimo nos níveis de recuperação de pressão total, devido ao fluxo de alta energia na parte superior da fuselagem, o qual é produzido pelo vórtice do canard a moderados ângulos de ataque. Finalmente, para velocidades supersônicas, a asa com dispositivos LEX (Leading Edge Extensions) obteve os melhores níveis de recuperação de pressão total, pois a implementação destes dispositivos apresentou uma montagem mais vantajosa com sua fuselagem para gerar o cone de Mach, aumentando os níveis de recuperação de pressão total e reduzindo a distorção na face do motor. No entanto, para velocidades maiores a Mach = 2, sem importar a configuração de asa, a expansão do escoamento sobre a fuselagem e as asas da aeronave produziu um aumento no número Mach local na entrada do intake, o que reduziu os níveis de desempenho e compatibilidade do mesmo. Em consequência, a posição do intake na parte superior da fuselagem representa uma opção de configuração viável para aeronaves que requerem apenas capacidades de ângulo de ataque razoáveis, tais como aeronaves de caça ar-terra, sendo a asa com dispositivos LEX a geometria que representa melhores qualidades de desempenho na maioria dos 3 regimes de voo avaliados. / The conception of non-conventional aircraft with the aim of achieving a certain performance or operational improvement is undoubtedly, one of the most important objectives of the aeronautical engineering. These improvements involve: drag reduction, cross section reduction, noise reduction, shortening of take-off and landing distance, increase of aerodynamic efficiency, payload increase, among others. Therefore, optimization multidisciplinary methods became in very important tools to upgrade the conceptual design phase of these aircraft. In this context, this work had as aim the development of the conceptual design of a nonconventional fighter aircraft and the aerodynamic performance analysis of its air intake, having as main characteristic to be located at the top of the fuselage (Dorsal Intake). The conceptual design was developed through the implementation of multidisciplinary design optimization (MDO) methods in the parametric design phase, integrating concepts of: statistical entropy, quality function deployment (QFD) and constraint analysis. Besides that, it was used analytical and theoretical methods, computer-aided design (CAD) tools and computational fluid dynamics (CFD) simulations to optimize and obtain the final aircraft configuration. Subsequently, 5 delta wing configurations were selected to evaluate the dorsal intake performance changes under the aerodynamic influence of the main aircraft surfaces (Wings and Fuselage) in subsonic (Mach = 0.4), transonic (Mach = 0.9) and supersonic (Mach = 1.7; 2) flight regimes, at various angles of attack (From α = 10º to α = 30º ). The results found in this work were evaluated separately, later these were integrated, in order to get the new conception of non-conventional fighter aircraft; the MDO application allowed to estimate the ideal design variables for developing the aircraft design, regarding to its mission. On the other hand, the results of the intake-structure integration shown that appropriate performance and compatibility characteristics were maintained during the subsonic flight stages for the 5 wing configurations. However, for transonic velocities, the canard configuration presented an increase in the total pressure recovery levels, due to the high energy flux on the fuselage, which is produced by the canard vortex at moderate angles of attack. Finally, for supersonic velocities, the wing with LEX (Leading Edge Extensions) devices got the best levels of total pressure recovery, because the implementation of these devices presented a more advantageous assembly with its fuselage to generate the Mach cone, increasing the total pressure recovery levels and reducing the distortion at the engine face. However, for velocities higher than Mach = 2, regardless the wing configuration, the flow expansion on the fuselage and the wings produced an increase in the local Mach number in the intake entrance, which reduced the performance and compatibility levels of it. As a consequence, the top mounted intake position represents an option of viable configuration to aircraft that require only reasonable angles of attack capabilities, such as air-to-ground fighter aircraft, being the wing with LEX devices the geometry that represents better performance qualities in the majority of the 3 evaluated flight regimes.
43

Otimização multidisciplinar em projeto de asas flexíveis utilizando metamodelos / Multidisciplinary design optimization of flexible wings using metamodels

Paulo Roberto Caixeta Júnior 11 August 2011 (has links)
A Otimização Multidisciplinar em Projeto (em inglês, Multidisciplinary Design Optimization - MDO) é uma ferramenta de projeto importante e versátil e seu uso está se expandindo em diversos campos da engenharia. O foco desta metodologia é unir disciplinas envolvidas no projeto para que trabalhem suas variáveis concomitantemente em um ambiente de otimização, para obter soluções melhores. É possível utilizar MDO em qualquer fase do projeto, seja a fase conceitual, preliminar ou detalhada, desde que os modelos numéricos sejam ajustados às necessidades de cada uma delas. Este trabalho descreve o desenvolvimento de um código de MDO para o projeto conceitual de asas flexíveis de aeronaves, com restrição quanto ao fenômeno denominado flutter. Como uma ferramenta para o projetista na fase conceitual, os modelos numéricos devem ser razoavelmente precisos e rápidos. O intuito deste estudo é analisar o uso de metamodelos para a previsão do flutter de asas de aeronaves no código de MDO, ao invés de um modelo convencional, o que pode alterar significativamente o custo computacional da otimização. Para este fim são avaliados três técnicas diferentes de metamodelagem, que foram escolhidas por representarem duas classes básicas de metamodelos, a classe de métodos de interpolação e a de métodos de aproximação. Para representá-las foram escolhidos o método de interpolação por funções de base radial e o método de redes neurais artificiais, respectivamente. O terceiro método, que é considerado um método híbrido dos dois anteriores, é chamado de redes neurais por funções de bases radiais e é uma tentativa de acoplar as características de ambos em um único metamodelo. Os metamodelos são preparados utilizando um código para solução aeroelástica baseado no método dos elementos finitos acoplado com um modelo aerodinâmico linear de faixas. São apresentados resultados de desempenho dos três metamodelos, de onde se pode notar que a rede neural artificial é a mais adequada para previsão de flutter. O processo de MDO é realizado com o uso de um algoritmo genético multi-objetivo baseado em não-dominância, cujos objetivos são a maximização da velocidade crítica de flutter e a minimização da massa estrutural. Dois estudos de caso são apresentados para avaliar o desempenho do código de MDO, revelando que o processo global de otimização realiza de fato a busca pela fronteira de Pareto. / The Multidisciplinary Design Optimization, MDO, is an important and versatile design tool and its use is spreading out in several fields of engineering. The focus of this methodology is to put together disciplines involved with the design to work all their variables concomitantly, at an optimization environment to obtain better solutions. It is possible to use MDO in any stage of the design process, that is in the conceptual, preliminary or detailed design, as long as the numerical models are fitted to the needs of each of these stages. This work describes the development of a MDO code for the conceptual design of flexible aircraft wings, with restrictions regarding the phenomenon called flutter. As a tool for the designer at the conceptual stage, the numerical models must be fairly accurate and fast. The aim of this study is to analyze the use of metamodels for the flutter prediction of aircraft wings in the MDO code, instead of a conventional model itself, what may affect significantly the computational cost of the optimization. For this purpose, three different metamodeling techniques have been evaluated, representing two basic metamodel classes, that are, the interpolation and the approximation class. These classes are represented by the radial basis function interpolation method and the artificial neural networks method, respectively. The third method, which is considered as a hybrid of the other two, is called radial basis function neural networks and is an attempt of coupling the features of both in single code. Metamodels are prepared using an aeroelastic code based on finite element model coupled with linear aerodynamics. Results of the three metamodels performance are presented, from where one can note that the artificial neural network is best suited for flutter prediction. The MDO process is achieved using a non-dominance based multi-objective genetic algorithm, whose objectives are the maximization of critical flutter speed and minimization of structural mass. Two case studies are presented to evaluate the performance of the MDO code, revealing that overall optimization process actually performs the search for the Pareto frontier.
44

Projeto conceitual e análise de desempenho do sistema de admissão de ar em uma aeronave não convencional de combate / Conceptual design and performance analysis of the air intake system in a non-conventional fighter aircraft

Pedro David Bravo Mosquera 22 May 2017 (has links)
A concepção de aeronaves não convencionais a fim de alcançar um determinado desempenho ou melhoria operacional é sem dúvida um dos objetivos mais importantes da engenheira aeronáutica. Tais melhorias envolvem: redução de arrasto, redução da seção transversal, redução de ruído, redução da distância de decolagem e pouso, aumento da eficiência aerodinâmica, aumento da carga útil, entre outros. Por tanto, métodos de otimização multidisciplinar se tornaram em ferramentas muito úteis para aprimorar o projeto conceitual destas aeronaves. Neste contexto, este trabalho teve como objetivo o desenvolvimento do projeto conceitual de uma aeronave não convencional de combate e a análise de desempenho aerodinâmico do seu sistema de admissão de ar (Intake), tendo como principal característica, estar localizado na parte superior da fuselagem da aeronave (Dorsal Intake). O delineamento conceitual foi desenvolvido através da implementação de metodologias de otimização multidisciplinar de projeto (MDO) na fase de projeto paramétrico, integrando conceitos como: entropia estatística, desdobramento da função qualidade (QFD) e análise de restrições. Além disso, foram usados métodos analíticos e teóricos, ferramentas de desenho assistido por computador (CAD) e simulações da dinâmica dos fluidos computacionais (CFD) para otimizar e obter a configuração final da aeronave. Posteriormente, 5 configurações de asa delta foram selecionadas para avaliar as mudanças de desempenho do dorsal intake sob a influência aerodinâmica das superfícies principais da aeronave (Asa e Fuselagem), em regimes de voo subsônico (Mach = 0.4), transônico (Mach = 0.9) e supersônico (Mach = 1.7; 2) a diversos ângulos de ataque (De α = 10º a α = 30º ). Os resultados encontrados neste trabalho foram avaliados em separado, subsequentemente foram integrados, a fim de obter a nova concepção de aeronave não convencional de combate; a aplicação de MDO permitiu estimar as variáveis de projeto ideais para o desenvolvimento do projeto da aeronave, em relação a sua missão. Em contrapartida, os resultados da integração intake-estrutura mostram que apropriadas características de desempenho e compatibilidade foram mantidas durante as fases de voo subsônicas, para as 5 configurações de asa. No entanto, para velocidades transônicas, a configuração canard apresentou um acréscimo nos níveis de recuperação de pressão total, devido ao fluxo de alta energia na parte superior da fuselagem, o qual é produzido pelo vórtice do canard a moderados ângulos de ataque. Finalmente, para velocidades supersônicas, a asa com dispositivos LEX (Leading Edge Extensions) obteve os melhores níveis de recuperação de pressão total, pois a implementação destes dispositivos apresentou uma montagem mais vantajosa com sua fuselagem para gerar o cone de Mach, aumentando os níveis de recuperação de pressão total e reduzindo a distorção na face do motor. No entanto, para velocidades maiores a Mach = 2, sem importar a configuração de asa, a expansão do escoamento sobre a fuselagem e as asas da aeronave produziu um aumento no número Mach local na entrada do intake, o que reduziu os níveis de desempenho e compatibilidade do mesmo. Em consequência, a posição do intake na parte superior da fuselagem representa uma opção de configuração viável para aeronaves que requerem apenas capacidades de ângulo de ataque razoáveis, tais como aeronaves de caça ar-terra, sendo a asa com dispositivos LEX a geometria que representa melhores qualidades de desempenho na maioria dos 3 regimes de voo avaliados. / The conception of non-conventional aircraft with the aim of achieving a certain performance or operational improvement is undoubtedly, one of the most important objectives of the aeronautical engineering. These improvements involve: drag reduction, cross section reduction, noise reduction, shortening of take-off and landing distance, increase of aerodynamic efficiency, payload increase, among others. Therefore, optimization multidisciplinary methods became in very important tools to upgrade the conceptual design phase of these aircraft. In this context, this work had as aim the development of the conceptual design of a nonconventional fighter aircraft and the aerodynamic performance analysis of its air intake, having as main characteristic to be located at the top of the fuselage (Dorsal Intake). The conceptual design was developed through the implementation of multidisciplinary design optimization (MDO) methods in the parametric design phase, integrating concepts of: statistical entropy, quality function deployment (QFD) and constraint analysis. Besides that, it was used analytical and theoretical methods, computer-aided design (CAD) tools and computational fluid dynamics (CFD) simulations to optimize and obtain the final aircraft configuration. Subsequently, 5 delta wing configurations were selected to evaluate the dorsal intake performance changes under the aerodynamic influence of the main aircraft surfaces (Wings and Fuselage) in subsonic (Mach = 0.4), transonic (Mach = 0.9) and supersonic (Mach = 1.7; 2) flight regimes, at various angles of attack (From α = 10º to α = 30º ). The results found in this work were evaluated separately, later these were integrated, in order to get the new conception of non-conventional fighter aircraft; the MDO application allowed to estimate the ideal design variables for developing the aircraft design, regarding to its mission. On the other hand, the results of the intake-structure integration shown that appropriate performance and compatibility characteristics were maintained during the subsonic flight stages for the 5 wing configurations. However, for transonic velocities, the canard configuration presented an increase in the total pressure recovery levels, due to the high energy flux on the fuselage, which is produced by the canard vortex at moderate angles of attack. Finally, for supersonic velocities, the wing with LEX (Leading Edge Extensions) devices got the best levels of total pressure recovery, because the implementation of these devices presented a more advantageous assembly with its fuselage to generate the Mach cone, increasing the total pressure recovery levels and reducing the distortion at the engine face. However, for velocities higher than Mach = 2, regardless the wing configuration, the flow expansion on the fuselage and the wings produced an increase in the local Mach number in the intake entrance, which reduced the performance and compatibility levels of it. As a consequence, the top mounted intake position represents an option of viable configuration to aircraft that require only reasonable angles of attack capabilities, such as air-to-ground fighter aircraft, being the wing with LEX devices the geometry that represents better performance qualities in the majority of the 3 evaluated flight regimes.
45

Application of multidisciplinary design optimisation to engine calibration optimisation

Yin, Xuefei January 2012 (has links)
Automotive engines are becoming increasingly technically complex and associated legal emissions standards more restrictive, making the task of identifying optimum actuator settings to use significantly more difficult. Given these challenges, this research aims to develop a process for engine calibration optimisation by exploiting advanced mathematical methods. Validation of this work is based upon a case study describing a steady-state Diesel engine calibration problem. The calibration optimisation problem seeks an optimal combination of actuator settings that minimises fuel consumption, while simultaneously meeting or exceeding the legal emissions constraints over a specified drive cycle. As another engineering target, the engine control maps are required as smooth as possible. The Multidisciplinary Design Optimisation (MDO) Frameworks have been studied to develop the optimisation process for the steady state Diesel engine calibration optimisation problem. Two MDO strategies are proposed for formulating and addressing this optimisation problem, which are All At Once (AAO), Collaborative Optimisation. An innovative MDO formulation has been developed based on the Collaborative Optimisation application for Diesel engine calibration. Form the MDO implementations, the fuel consumption have been significantly improved, while keep the emission at same level compare with the bench mark solution provided by sponsoring company. More importantly, this research has shown the ability of MDO methodologies that manage and organize the Diesel engine calibration optimisation problem more effectively.
46

Bayesian collaborative sampling: adaptive learning for multidisciplinary design

Lee, Chung Hyun 14 November 2011 (has links)
A Bayesian adaptive sampling method is developed for highly coupled multidisciplinary design problems. The method addresses a major challenge in aerospace design: exploration of a design space with computationally expensive analysis tools such as computational fluid dynamics (CFD) or finite element analysis. With a limited analysis budget, it is often impossible to optimize directly or to explore a design space with off-line design of experiments (DoE) and surrogate models. This difficulty is magnified in multidisciplinary problems with feedbacks between disciplines because each design point may require iterative analyses to converge on a compatible solution between different disciplines. Bayesian Collaborative Sampling (BCS) is a bi-level architecture for adaptive sampling that simulataneously - concentrates disciplinary analyses in regions of a design space that are favorable to a system-level objective - guides analyses to regions where interdisciplinary coupling variables are probably compatible BCS uses Bayesian models and sequential sampling techniques along with elements of the collaborative optimization (CO) architecture for multidisciplinary optimization. The method is tested with the aero-structural design of a glider wing and the aero-propulsion design of a turbojet engine nacelle.
47

Development of a Methodology for Efficient FEM Pre-processes to Aid Simulation-driven Design

Bäckman, Mattias, Kling, Josef January 2018 (has links)
With both tougher competition and legislations, companies always strive to improve their products while cutting unnecessary costs. This master’s thesis investigates if the after-treatment systems department at the heavy-duty vehicle company Scania CV AB in Södertälje, Sweden can improve their development process by implementing automated FEM pre-processes for welded sheet metal components. The research is based upon theory from various fields within product development, knowledge-based engineering, FEM and design optimization, contributing to an understating of what effects this project could have on the development process as a whole. Large parts of the pre-processes used at the department today were identified as repetitive and suitable for automation. Using a simplified CAD model of an after-treatment system as a case study, a methodology for more efficient FEM pre-processes was developed. The methodology includes changes to the workflow between the design engineer and the CAE engineer as well as a software that automatically meshes welded sheet metal products. First of all, the design engineer inserts lines representing the weld positions in the CAD model and exports the model to the CAE engineer. Hereafter, the CAE engineer simply selects necessary settings for the mesh and launches the developed software that automatically meshes the sheet metal components as well as identifies and meshes the welds. The technique used to mesh the welds in HyperMesh fails for certain weld characteristics, resulting in a robustness of 54 % of the total weld length for the worst case in the case study. These characteristics are welds crossing other welds, welds adjacent to a sharp corner and welds containing a sharp corner. By excluding these problem areas when defining the lines in CATIA, the robustness increases substantially to between 72 % and 88 % of the total weld length in the case study, where the exclusion zones represent 3 % of the total weld length. Based on the case study, the developed methodology could potentially shorten the iterative development process between the design and CAE engineer with a total of 25 %, while the CAE engineer’s tasks in the development process can be cut with up to 60 %. This allows for more time being focused on value-adding tasks, resulting in higher quality products and an increased profit for the company.
48

Kurvenscheibensynthese: Lösungsansatz zum Abbilden von Rast in Rast Übertragungsfunktionenin Pro/ENGINEER

Stegemann, Patrick 12 May 2011 (has links)
Der Vortrag behandelt die praktische Umsetzung einer Rast in Rast Kurvenscheibensynthese (Übertragungsfunktion: modifizierte Sinoide) bis zum Ableiten einer ersten Grundform der Kurvenscheibe. Aufgezeigt werden dabei die notwendigen Schritte zur Parametrisierung der Eingabedaten wie Kurvenscheiben- und Übertragungswinkel sowie das spätere Ausleiten einer Spurkurve (Bewegungsaufzeichnung des Kontaktpunktes Kurvenscheibe/Koppel) in das Modell der Kurvenscheibe. Die folgenden notwendigen Optimierungsschritte zur Reduzierung des Krafteingriffswinkels, des Normalkraftverlaufs und der Kurvenscheiben - Mittelpunktslage werden theoretisch behandelt. Das Umsetzen der Optimierung könnte mit Hilfe des Behavioral Modeling Extension - Moduls aus Creo Elements/Pro erfolgen.
49

Evaluation of parametric CAD models from a manufacturing perspective to aid simulation driven design

Satish Prabhu, Nachiketh, Sarapady, Ranjan Tunga January 2019 (has links)
Scania are known among to be the world’s leading supplier of transport solutions for heavy trucks and buses. Scania’s goal is to develop combustion engines that achieve low-pollutant emissions as well as lower carbon-footprint with higher efficiency. To achieve the above Scania has invested resources in Simulation Driven Design of parametric CAD models which drives design innovation rather than following the design. This enables in creating flexible and robust models in their design process. This master thesis is being conducted in collaboration with Scania exhaust after treatment systems department, focusing on developing a methodology to automatically evaluate the cost and manufacturability of a parametric model, which is intended for an agile working environment with fast iterations within Scania. From the thesis methodology’s data collection process literature study, former thesis work and interviews with designers and cost engineers at Scania, a proposed method is developed that can be implemented during the design process. The method involved four different phase they are Design phase, Analysis phase, Validation phase and Improvement phase. The proposed method is evaluated to check the method feasibility for evaluation on parameteric CAD parts for manufacturability and costing. This proposed method is applied on two different parts of a silencer as part of a case study which is mainly to evaluate the results from Improvement phase. The focus of this thesis is to realise the proposed method through simulation software like sheet metal stamping/forming simulation, cost evaluating tool where the simulation driven design process is achieved. This is done with the help of collaboration between parameteric CAD models and the above simulation software under a common MDO framework through DOE study run or optimisation study runs. The resultant designs is later considered to be improved design in terms of manufacturability and costing.
50

Application of Multidisciplinary Design Optimisation to Engine Calibration Optimisation.

Yin, Xuefei January 2012 (has links)
Automotive engines are becoming increasingly technically complex and associated legal emissions standards more restrictive, making the task of identifying optimum actuator settings to use significantly more difficult. Given these challenges, this research aims to develop a process for engine calibration optimisation by exploiting advanced mathematical methods. Validation of this work is based upon a case study describing a steady-state Diesel engine calibration problem. The calibration optimisation problem seeks an optimal combination of actuator settings that minimises fuel consumption, while simultaneously meeting or exceeding the legal emissions constraints over a specified drive cycle. As another engineering target, the engine control maps are required as smooth as possible. The Multidisciplinary Design Optimisation (MDO) Frameworks have been studied to develop the optimisation process for the steady state Diesel engine calibration optimisation problem. Two MDO strategies are proposed for formulating and addressing this optimisation problem, which are All At Once (AAO), Collaborative Optimisation. An innovative MDO formulation has been developed based on the Collaborative Optimisation application for Diesel engine calibration. Form the MDO implementations, the fuel consumption have been significantly improved, while keep the emission at same level compare with the bench mark solution provided by sponsoring company. More importantly, this research has shown the ability of MDO methodologies that manage and organize the Diesel engine calibration optimisation problem more effectively. / Jaguar Land Rover

Page generated in 0.0225 seconds