• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 12
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interaction of mycobacteria with myeloid-derived suppressor cells / Wechselwirkung von Mykobakterien mit myeloiden Suppressorzellen

John, Vini January 2020 (has links) (PDF)
Myeloid-derived suppressor cells (MDSCs) constitute of monocytic (M-MDSCs) and granulocytic cell subsets (G-MDSCs)and were initially described as suppressors of T-cell function in tumor microenvironments. Recent studies have shown the involvement of MDSCs in a number of infectious diseases including Mycobacterium tuberculosis (Mtb) infection. MDSCs are tremendously accumulated in patients with Mtb infection and exert a suppressive effect on T cell responses against mycobacteria. Mycobacterium bovis BCG, the only available vaccine against Mtb fails to protect against the adult pulmonary tuberculosis (TB). Understanding the mechanisms of MDSC suppression for immunity against mycobacterial infection will provide a rational basis to improve anti- TB vaccination and host-directed therapies against TB. In this study, we investigated the role of three lipid-rich components of the plasma membrane, Caveolin-1(Cav-1), Acid Sphingomyelinase (ASM) and asialo-GM1 on BCG-activated MDSCs. Cav-1 is one of the vital components of caveolae (plasma membrane invaginations) which regulates apoptosis and lipid metabolism. In this work, we found that MDSCs upregulated Cav-1, TLR4 and TLR2 expression after BCG infection on the cell surface. However, Cav-1 deficiency resulted in a selective defect in the intracellular TLR2 accumulation in the M-MDSC, but not G-MDSC subset. Further analysis indicated no difference in the phagocytosis of BCG by M-MDSCs from WT and Cav1-/- mice but a reduced capacity to up-regulate surface markers, to secrete various cytokines, induce iNOS and NO production. These defects correlated with deficits of Cav1-/- MDSCs in the suppression of T cell proliferation. Among the signaling pathways that were affected by Cav-1 deficiency, we found lower phosphorylation of NF-kB and p38 mitogen-activated protein kinase (MAPK) in BCG - activated MDSCs. ASM is an enzyme present in lysosomes and is translocated to the cell surface where it hydrolyzes sphingomyelin into ceramide. Flow cytometric studies revealed that MDSCs phagocytosed BCG independent of inhibiting ASMase using pharmacological inhibitors (amitryptiline or desipramine) or MDSCs from WT and ASM-/-. Suppression of ASMase or using ASM-/- MDSCs resulted in reduced NO production and decreased cytokine secretion by MDSCs in response to BCG. Furthermore, MDSCs inhibited by amitryptiline had impaired AKT phosphorylation upon BCG infection. Asialo-GM1 is a ganglioside expressed on the cell surface of MDSCs reported to cooperate with TLR2 for activating ERK signaling. Here, in this study, we found that asialo-GM1 expression was upregulated specifically upon mycobacterial infection and not upon any other stimulus. We noted that the soluble form of asialo-GM1 bound to BCG. Flow cytometric studies revealed that blocking 81 asialo-GM1 did not affect the phagocytosis of BCG into MDSCs. Furthermore, blocking of asialo- GM1 had no effect on the cytokine and NO secretion or AKT signaling. Collectively, the data presented in this work implicated that Cav-1, ASM, asialo-GM1 are dispensable for the internalization of BCG. Rather, Cav-1 and ASM are required for the functional activation of MDSCs. Although asialo-GM1 binds to BCG, we did not find any difference in the functional activation of MDSCs after blocking asialo-GM1. This study provides insights into the role of lipid raft components of the MDSC cell membrane during mycobacterial infection. / Myeloide Suppressorzellen (engl, myeloid-derived suppressor cells MDSCs) bestehen aus monozytischen (M-MDSCs) und granulozytären Subtypen (G-MDSCs) und wurden anfangs als Suppressoren der T-Zellfunktion in Tumormikroumgebungen beschrieben. Kürzlich durchgeführte Studien haben gezeigt, dass MDSCs an einer Reihe von Infektionskrankheiten beteiligt sind, einschließlich einer Infektion mit Mycobacterium tuberculosis (Mtb). MDSCs sind bei der Patienten Mtb-Infektion enorm akkumuliert und üben eine supprimierende Wirkung auf die T-Zell-Antworten gegen Mykobakterien aus. Mycobacterium bovis BCG, der einzige verfügbare Impfstoff gegen Mtb, schützt nicht gegen die Lungentuberkulose bei Erwachsenen (TB). Das Verständnis der Mechanismen über welche MDSCs eine der Immunsuppression bei mykobakteriellen Infektionen vermitteln, bilden eine rationale Grundlage für die Verbesserung der Anti-TB-Impfung und Therapien gegen TB. In dieser Studie wurden die Rolle der drei lipidreichen Komponenten der Plasmamembran, Caveolin-1 (Cav-1), Saure Sphingomyelinase (ASM) und Asialo-GM1 bei BCGaktivierten MDSCs untersucht. Cav-1 ist eine der Komponenten von Caveolae (Plasmamembran-Invagination), die die Apoptose und den Fettstoffwechsel regulieren. Diese Arbeit zeigte, dass MDSCs die Expression von Cav-1, TLR4 und TLR2 nach BCG-Infektion auf der Zelloberfläche hochregulierten. Eine Cav-1 Defizienz führte jedoch zu einem selektiven Defekt in der intrazellulären TLR2-Akkumulation bei MMDSCs, jedoch nicht bei G-MDSCs. Weitere Analysen zeigten keinen Unterschied in der Phagozytose von BCG durch M-MDSCs von WT- und Cav1-/- Mäusen, jedoch eine verringerte Fähigkeit, Oberflächenmarker hoch zu regulieren, verschiedene Zytokine zu sekretieren und die Produktion von iNOS und NO zu induzieren. Diese Defekte korrelierten mit Defiziten von Cav1-/- MDSCs bei der Unterdrückung der T-Zell-Proliferation. Unter den von Cav-1-Mangel betroffenen Signalwegen fanden wir eine geringere Phosphorylierung der NF-KB- und p38- Mitogen-aktivierten Proteinkinase (MAPK) in BCG-aktivierten MDSCs. ASM ist ein in Lysosomen vorhandenes Enzym, das an die Zelloberfläche transloziert wird, wo es Sphingomyelin zu Ceramid hydrolysiert. Durchflusszytometrische Studien ergaben, dass MDSCs BCG unabhängig von der Hemmung von ASMase mit pharmakologischen Inhibitoren (Amitryptilin oder Desipramin) oder MDSCs von ASM-/- Mäusen BCG phagozytierten. Die Suppression von ASMase oder die Verwendung von ASM-/- MDSCs führte zu einer verringerten NO Produktion und einer verringerten Zytokinsekretion durch MDSCs als Antwort auf BCG. Darüber hinaus hatten MDSCs, die durch Amitryptilin inhibiert wurden, die AKT-Phosphorylierung bei einer BCG-Infektion beeinträchtigt. Asialo-GM1 ist ein Gangliosid, das auf der Zelloberfläche von MDSCs exprimiert wird, von dem berichtet wurde, dass es mit TLR2 kooperiert, um ERK-Signale zu aktivieren. Hier in dieser Studie haben wir festgestellt, dass die Expression von Asialo-GM1 spezifisch bei mycobakterieller Infektion und nicht bei einem anderen Stimulus hochreguliert wurde. Wir haben festgestellt, dass die lösliche Form von Asialo-GM1 an BCG binden kann. Durchflusszytometrische Studien ergaben, dass die Blockade von Asialo-GM1 die Phagozytose von BCG in MDSCs nicht beeinflusst. Darüber hinaus hatte die Blockierung von Asialo-GM1 keinen Einfluss auf die Zytokin- und NO-Sekretion oder das AKT-Signal. Zusammenfassend ergaben die in dieser Arbeit präsentierten Daten, dass Cav-1, ASM, asialoGM1 für die Internalisierung von BCG entbehrlich sind. Dagegen sind Cav-1 und ASM für die funktionale Aktivierung von MDSCs erforderlich. Obwohl Asialo-GM1 an BCG bindet, konnten wir nach der Blockierung von Asialo-GM1 keinen Unterschied in der funktionellen Aktivierung von MDSCs feststellen. Diese Studie liefert Einblicke in die Rolle einiger Komponenten der lipid-reicher Areale der MDSC-Zellmembran bei mykobakteriellen Infektionen.
2

IL-10 Induces an Immune Repressor Pathway in Sepsis by Promoting S100A9 Nuclear Localization and MDSCdsc Development

Bah, Isatou, Kumbhare, Ajinkya, Nguyen, Lam, McCall, Charles E., El Gazzar, Mohamed 01 October 2018 (has links)
The myeloid-related protein S100A9 reprograms Gr1+CD11b+ myeloid precursors into myeloid-derived suppressor cells (MDSCs) during murine sepsis. Here, we show that the immunosuppressive cytokine IL-10 supports S100A9 expression and its nuclear localization in MDSCs to function as immune repressors. To support this new concept, we showed that antibody mediated IL-10 blockade in wild-type mice after sepsis induction inhibited MDSC expansion during late sepsis, and that ectopic expression of S100A9 in Gr1+CD11b+ cells from S100A9 knockout mice switched them into the MDSC phenotype only in the presence of IL-10. Knockdown of S100A9 in MDSCs from wild-type mice with late sepsis confirmed our findings in the S100A9 knockout mice. We also found that while both IL-6 and IL-10 can activate S100A9 expression in naive Gr1+CD11b+ cells, only IL-10 can induce S100A9 nuclear localization. These results support that IL-10 drives the molecular path that generates MDSCs and enhances immunosuppression during late sepsis, and inform that targeting this immune repressor path may improve sepsis survival in mice.
3

Myeloid Cell-Specific Knockout of NFI-A Improves Sepsis Survival

McPeak, Melissa B., Youssef, Dima, Williams, Danielle A., Pritchett, Christopher, Yao, Zhi Q., McCall, Charles E., El Gazzar, Mohamed 01 April 2017 (has links)
Myeloid progenitor-derived suppressor cells (MDSCs) arise from myeloid progenitors and suppress both innate and adaptive immunity. MDSCs expand during the later phases of sepsis in mice, promote immunosuppression, and reduce survival. Here, we report that the myeloid differentiation-related transcription factor nuclear factor I-A (NFI-A) controls MDSC expansion during sepsis and impacts survival. Unlike MDSCs, myeloid cells with conditional deletion of the Nfia gene normally differentiated into effector cells during sepsis, cleared infecting bacteria, and did not express immunosuppressive mediators. In contrast, ectopic expression of NFI-A in myeloid progenitors from NFI-A myeloid cell-deficient mice impeded myeloid cell maturation and promoted immune repressor function. Importantly, surviving septic mice with conditionally deficient NFI-A myeloid cells were able to respond to challenge with bacterial endotoxin by mounting an acute inflammatory response. Together, these results support the concept of NFI-A as a master molecular transcriptome switch that controls myeloid cell differentiation and maturation and that malfunction of this switch during sepsis promotes MDSC expansion that adversely impacts sepsis outcome.
4

Nádorová imunoterapie a možnosti zesílení jejího účinku

KVARDOVÁ, Karolína January 2018 (has links)
The aim of this thesis was to study cancer immunotherapy based on combination of TLR7 signalling and activation of phagocytosis of cancer cells. This thesis was focused on the possibility of enhancing its effect. The possibilities of removing immunosuppressive barriers (esp. MDSCs and adenosine) were studied, using a combination with chemotherapy or enzyme - adenosine deaminase and purine nucleoside phosphorylase. The effect of enzymes was studied in both in vivo and in vitro experiments. As another way of optimizing the therapy used so far, the modulation of the therapeutic mixture using lower molecular weight substances was tried.
5

S100A9 Sustains Myeloid-Derived Suppressor Expansion and Immunosuppression During Chronic Murine Sepsis

Alkhateeb, Tuqa, PharmD, Kumbhare, Ajinkya, MD, Bah, Isatou, BS, Elgazzar, Mohamed, PhD 12 April 2019 (has links)
Myeloid-derived suppressor cells (MDSC) expand during sepsis, suppress both innate and adaptive immunity, and promote chronic immunosuppression, which characterizes the late/chronic phase of sepsis. We previously reported that the transcription factors Stat3 and C/EBPb synergize to induces the expression of microRNA (miR)-21 and miR-181b to promote MDSC expansion in a mouse model of polymicrobial sepsis that progresses from an early/acute proinflammatory phase to a late/chronic immunosuppressive stage. We also showed that Gr1+CD11b+ cells, the precursors of MDSCs, from mice genetically deficient in the inflammatory protein S100A9 lack miR-21 or miR-181b in late sepsis, and are not immunosuppressive. In the present study, we show that S100A9 induces miR-21 and miR-181b during the late sepsis phase. We find that S100A9 associates with and stabilizes the Stat3-C/EBPb protein complex that activates the miRNA promoters. Reconstituting Gr1+CD11b+ cells from the S100A9 knockout mice with late sepsis with S100A9 protein restores the Stat3-C/EBPb protein complex and miRNA expressions, and switches the Gr1+CD11b+ cells into the immunosuppressive, MDSC phenotype. Importantly, we find that this process requires IL-10 mediated signaling, which induces S100A9 translocation from the cytosol to the nucleus. These results demonstrate that S100A9 promotes MDSC expansion and immunosuppression in late/chronic sepsis by inducing the expression of miR-21 and miR-181b.
6

TARGETING IMMUNE SUPPRESSION IN GLIOBLASTOMA

Alban, Tyler Joseph 29 May 2020 (has links)
No description available.
7

HCV-Associated Exosomes Upregulate RUNXOR and RUNX1 Expressions to Promote MDSC Expansion and Suppressive Functions through STAT3-miR124 Axis

Thakuri, Bal Krishna Chand, Zhang, Jinyu, Zhao, Juan, Nguyen, Lam N., Nguyen, Lam N.T., Schank, Madison, Khanal, Sushant, Dang, Xindi, Cao, Dechao, Lu, Zeyuan, Wu, Xiao Y., Jiang, Yong, El Gazzar, Mohamed, Ning, Shunbin, Wang, Ling, Moorman, Jonathan P., Yao, Zhi Q. 18 December 2020 (has links)
RUNX1 overlapping RNA (RUNXOR) is a long non-coding RNA and plays a pivotal role in the differentiation of myeloid cells via targeting runt-related transcription factor 1 (RUNX1). We and others have previously reported that myeloid-derived suppressor cells (MDSCs) expand and inhibit host immune responses during chronic viral infections; however, the mechanisms responsible for MDSC differentiation and suppressive functions, in particular the role of RUNXOR-RUNX1, remain unclear. Here, we demonstrated that RUNXOR and RUNX1 expressions are significantly upregulated and associated with elevated levels of immunosuppressive molecules, such as arginase 1 (Arg1), inducible nitric oxide synthase (iNOS), signal transducer and activator of transcription 3 (STAT3), and reactive oxygen species (ROS) in MDSCs during chronic hepatitis C virus (HCV) infection. Mechanistically, we discovered that HCV-associated exosomes (HCV-Exo) can induce the expressions of RUNXOR and RUNX1, which in turn regulates miR-124 expression via STAT3 signaling, thereby promoting MDSC differentiation and suppressive functions. Importantly, overexpression of RUNXOR in healthy CD33+ myeloid cells promoted differentiation and suppressive functions of MDSCs. Conversely, silencing RUNXOR or RUNX1 expression in HCV-derived CD33+ myeloid cells significantly inhibited their differentiation and expressions of suppressive molecules and improved the function of co-cultured autologous CD4 T cells. Taken together, these results indicate that the RUNXOR-RUNX1-STAT3-miR124 axis enhances the differentiation and suppressive functions of MDSCs and could be a potential target for immunomodulation in conjunction with antiviral therapy during chronic HCV infection.
8

An Integrative Pan-Cancer Analysis of Kinesin Family Member C1 (KIFC1) in Human Tumors

Wu, Hao, Duan, Yingjuan, Gong, Siming, Zhu, Qiang, Liu, Xuanyou, Liu, Zhenguo 13 June 2023 (has links)
Kinesin family member C1 (KIFC1) is a minus-end-directed motor protein that is critically involved in microtubule crosslinking and spindle formation. KIFC1 is essential for supernumerary centrosomes, and it is associated with the initiation and progression of cancers. In the present study, we initially reviewed the The Cancer Genome Atlas database and observed that KIFC1 is abundantly expressed in most types of tumors. We then analyzed the gene alteration profiles, protein expressions, prognoses, and immune reactivities of KIFC1 in more than 10,000 samples from several well-established databases. In addition, we conducted a gene set enrichment analysis to investigate the potential mechanisms for the roles of KIFC1 in carcinogenesis. The pan-cancer analysis of KIFC1 demonstrates significant statistical correlations of the KIFC1 expression with the clinical prognoses, the oncogenic signature gene sets, the myeloid-derived suppressor cell infiltration, the ImmunoScore, the immune checkpoints, the microsatellite instabilities, and the tumor mutational burdens across multiple tumors. These data may provide important information on the understanding of the role and mechanisms of KIFC1 in carcinogenesis and immunotherapy, as well as on the clinical progression of a variety of cancers.
9

S100A9 Sustains Myeloid-Derived Suppressor Expansion and Immunosuppression During Chronic Murine Sepsis

Alkhateeb, Tuqa, PharmD, Kumbhare, Ajinkya, MD, Bah, Isatou, BS, Elgazzar, Mohamed, PhD 12 April 2019 (has links)
Myeloid-derived suppressor cells (MDSC) expand during sepsis, suppress both innate and adaptive immunity, and promote chronic immunosuppression, which characterizes the late/chronic phase of sepsis. We previously reported that the transcription factors Stat3 and C/EBPb synergize to induces the expression of microRNA (miR)-21 and miR-181b to promote MDSC expansion in a mouse model of polymicrobial sepsis that progresses from an early/acute proinflammatory phase to a late/chronic immunosuppressive stage. We also showed that Gr1+CD11b+ cells, the precursors of MDSCs, from mice genetically deficient in the inflammatory protein S100A9 lack miR-21 or miR-181b in late sepsis, and are not immunosuppressive. In the present study, we show that S100A9 induces miR-21 and miR-181b during the late sepsis phase. We find that S100A9 associates with and stabilizes the Stat3-C/EBPb protein complex that activates the miRNA promoters. Reconstituting Gr1+CD11b+ cells from the S100A9 knockout mice with late sepsis with S100A9 protein restores the Stat3-C/EBPb protein complex and miRNA expressions, and switches the Gr1+CD11b+ cells into the immunosuppressive, MDSC phenotype. Importantly, we find that this process requires IL-10 mediated signaling, which induces S100A9 translocation from the cytosol to the nucleus. These results demonstrate that S100A9 promotes MDSC expansion and immunosuppression in late/chronic sepsis by inducing the expression of miR-21 and miR-181b.
10

Long Non-Coding RNA Hotairm1 Promotes S100A9 Support of MDSC Expansion during Sepsis

Alkhateeb, Tuqa, Bah, Isatou, Kumbhare, Ajinkya, Youssef, Dima, Yao, Zhi Q., McCall, Charles E., Gazzar, Mohamed E. 01 January 2020 (has links)
Myeloid-derived suppressor cells (MDSCs) expand during mouse and human sepsis, but the mechanism responsible for this is unclear. We previously reported that nuclear transport of S100A9 protein programs Gr1CD11b myeloid precursors into MDSCs in septic mice. Here, we show that long non-coding RNA Hotairm1 converts MDSCs from an activator to a repressor state. Mechanistically, increased Hotairm1 expression in MDSCs in mice converted S100A9 from a secreted proinflammatory mediator to an immune repressor by binding to and shuttling it from cytosol to nucleus during late sepsis. High Hotairm1 levels were detected in exosomes shed from MDSCs from late septic mice. These exosomes inhibited lipopolysaccharide-stimulated secretion of S100A9 from early sepsis Gr1CD11b cells. Importantly, Hotairm1 knockdown in late sepsis Gr1CD11b MDSCs prevented S100A9 cytosol to nuclear transfer and decreased repression of proimmune T cells. Notably, ectopic expression of Hotairm1 in early sepsis Gr1CD11b cells shuttled S100A9 to the nucleus and promoted the MDSC repressor phenotype. In support of translating the mechanistic concept to human sepsis, we found that Hotairm1 binds S100A9 protein in CD33CD11bHLA-DR MDSCs during established sepsis. Together, these data support that Hotairm1 is a plausible molecular target for treating late sepsis immune suppression in humans and its immune repressor mechanism may be cell autonomous.

Page generated in 0.0204 seconds