• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 13
  • 11
  • 9
  • 8
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 117
  • 31
  • 23
  • 22
  • 19
  • 16
  • 16
  • 15
  • 14
  • 13
  • 13
  • 13
  • 12
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Contribution au développement d'interfaces neuro-électroniques / Contribution to the development of neuro-electric interfaces

Cottance, Myline 21 November 2014 (has links)
Les travaux menés au cours de cette thèse portent sur la microfabrication d'interfaces neuro-électroniques pour des applications en neurosciences. Nous avons choisi de nos focaliser sur la réhabilitation fonctionnelle motrice et sensorielle en développant différentes matrices de micro-électrodes (MEA) respectivement, des sondes neuronales rigides et des implants rétiniens souples. Selon les applications visées, deux types de substrats ont été utilisés pour concevoir ces MEA. Pour des analyses ou expériences in-vitro, les MEA (sondes neuronales) ont plutôt été réalisées sur des substrats rigides tels que le silicium ou le verre, tandis que pour les expériences in-vivo, les MEA (implants rétiniens) ont été réalisées sur des substrats souples tels que des polymères biocompatibles (polyimide ou parylène). Ces MEA ont été fabriquées avec différents matériaux d'électrodes (diamant dopé, platine, platine noir et or) qui ont également été testés afin de déterminer leur capacité en enregistrement et/ou stimulation. De plus, à l'aide de travaux de modélisation numérique, nous avons validé le concept d'une géométrie tridimensionnelle avec grille de masse permettant une stimulation plus focale des cellules. Cette thèse a ainsi contribué à stabiliser différents procédés de fabrication pour obtenir des MEA plus reproductibles ainsi que pour améliorer leur rendement. Elle a également permis d'établir un suivi et un protocole expérimental pour assurer une traçabilité des MEA et contrôler leur performances à toutes les étapes : depuis leur fabrication au moyen de techniques électrochimiques (CV, EIS) jusqu'aux expériences biologiques in-vitro et in-vivo / The work lead during this thesis deals with microfabrication of neuro-electronic interfaces for neuroscience applications. We have chosen to focus on motor and sensory function rehabilitations by developing Micro-Electrode Arrays (MEA) respectively, rigid neural probes and flexible retinal implants. According to the targeted applications, two types of substrates have been used to achieve these MEA. For analysis or in vitro experiments, neural probes MEA have been realized on rigid substrates such as silicon or glass whereas for in-vivo experiments, retinal implants MEA have been realized on flexible substrates such as biocompatible polymers (polyimide or parylene). These MEA were made with different electrode materials (boron doped diamond, platinum, black platinum and gold) which have been tested to determine their capability in recording and/or stimulation. Moreover, with numerical modelling work, we have validated a tridimensional geometry concept with a ground grid which permits a more local stimulation of cells. This thesis has contributed to stabilize different fabrication processes to obtain more repeatable MEA and also to improve their yield. It also allowed the set-up of a follow-up and an experimental protocol to insure MEA traceability and to monitor their performances at each step since their fabrication through means of electrochemical techniques (CV, EIS) to in vitro and in-vivo biological experiments
12

Estudos de durabilidade de conjuntos eletrodo-membrana-eletrodo (MEAs) produzidos por impressão à tela para uso em células a combustível do tipo PEM / Durability studies of membrane electrode assemblies (MEAs), produced through th sieve printing technique for use in proton exchange membrane fuel cells

Andréa, Vinicius 17 July 2013 (has links)
Custo e durabilidade ainda são os maiores impeditivos para a entrada das células a combustível no mercado de dispositivos usados para produção de eletricidade. Assim, o objetivo deste trabalho foi avaliar a durabilidade dos conjuntos eletrodo-membrana-eletrodo (MEAs) produzidos no IPEN pelo método de impressão à tela para uso em células a combustível do tipo PEM. Para tanto, foi necessário desenvolver um protocolo adequado de teste de durabilidade de longa duração, visando obter estimativas da taxa de queda do potencial elétrico da célula a combustível ao longo do tempo e, assim, fazer inferência a respeito do tempo de vida deste dispositivo. Os MEAs testados durante este estudo foram preparados pelo método de impressão à tela com catalisador de Pt/C comercial e membrana Nafion® 115. O aprimoramento do protocolo de teste de durabilidade de longa duração se deu pela escolha dos procedimentos a serem executados e pelo ajuste de alguns parâmetros de operação da célula a combustível, tais como temperatura da célula, fluxo de H2 e fluxo de O2. Para a análise dos dados obtidos com os testes, foram aplicados métodos estatísticos de ajuste de modelos e curvas de polarização. Além disso, amostras da camada catalítica de um dos MEAs utilizados nos testes de durabilidade de longa duração foram analisadas por meio de microscopia eletrônica de transmissão (MET) para serem comparadas com amostras da camada catalítica de um MEA de controle. Para se avaliar o desempenho global da célula a combustível do tipo PEM em operações de longa duração, um dos grandes desafios foi fazer a separação entre as componentes de perda de desempenho que são reversíveis das irreversíveis. As estimativas obtidas para a taxa de queda do potencial elétrico da célula a combustível ao longo do tempo variaram num intervalo de 108,19 a 318,15 μV.h-1. Estes resultados podem ser considerados satisfatórios quando comparados com valores apresentados na literatura. Finalmente, as imagens obtidas por MET mostraram uma tendência de aumento no tamanho médio das partículas Pt em decorrência do tempo de operação dos MEAs, mas que não implicou numa queda significativa do desempenho das células a combustível do tipo PEM testadas. / Cost and durability still represent the major barriers to the entry of proton exchange membrane fuel cells (PEMFCs) in the market. Thus, the objective of this work was to assess the durability of membrane-electrode assemblies (MEAs) produced at IPEN through the sieve printing method to be used in PEMFCs. For this purpose, an adequate long-term test protocol was developed aiming to obtain estimates of the voltage decay rate and lifetime of the PEMFCs. In the preparation of the MEAs through the sieve printing method commercial Pt/C catalyst and Nafion® 115 membranes were used. In the development of the long-term test protocol some procedures were defined and the fuel cell operational parameters were adjusted, such as cell temperature, H2 and O2 flows. In the analysis of the data obtained from the tests, statistical methods and polarization curves were applied. Samples of the catalyst layer from a MEA used in a long-term test were compared with samples from a control MEA using a Transmission Electron Microscopy (TEM). To evaluate the overall performance of the PEMFCs in long-term operations, a major challenge was to make the separation between the components of performance loss that are reversible from the ones that are irreversible. The estimates for the voltage decay rate ranged from 110 to 318 μV.h-1. These results can be taken as satisfactory when compared with values reported in the literature. Finally, there was an increase in the average size of Pt particles in the catalyst of the long-term tested MEA, as observed in the micrographs. However, this increase did not lead to a significant performance loss of the PEMFCs.
13

Estudos de durabilidade de conjuntos eletrodo-membrana-eletrodo (MEAs) produzidos por impressão à tela para uso em células a combustível do tipo PEM / Durability studies of membrane electrode assemblies (MEAs), produced through th sieve printing technique for use in proton exchange membrane fuel cells

Vinicius Andréa 17 July 2013 (has links)
Custo e durabilidade ainda são os maiores impeditivos para a entrada das células a combustível no mercado de dispositivos usados para produção de eletricidade. Assim, o objetivo deste trabalho foi avaliar a durabilidade dos conjuntos eletrodo-membrana-eletrodo (MEAs) produzidos no IPEN pelo método de impressão à tela para uso em células a combustível do tipo PEM. Para tanto, foi necessário desenvolver um protocolo adequado de teste de durabilidade de longa duração, visando obter estimativas da taxa de queda do potencial elétrico da célula a combustível ao longo do tempo e, assim, fazer inferência a respeito do tempo de vida deste dispositivo. Os MEAs testados durante este estudo foram preparados pelo método de impressão à tela com catalisador de Pt/C comercial e membrana Nafion® 115. O aprimoramento do protocolo de teste de durabilidade de longa duração se deu pela escolha dos procedimentos a serem executados e pelo ajuste de alguns parâmetros de operação da célula a combustível, tais como temperatura da célula, fluxo de H2 e fluxo de O2. Para a análise dos dados obtidos com os testes, foram aplicados métodos estatísticos de ajuste de modelos e curvas de polarização. Além disso, amostras da camada catalítica de um dos MEAs utilizados nos testes de durabilidade de longa duração foram analisadas por meio de microscopia eletrônica de transmissão (MET) para serem comparadas com amostras da camada catalítica de um MEA de controle. Para se avaliar o desempenho global da célula a combustível do tipo PEM em operações de longa duração, um dos grandes desafios foi fazer a separação entre as componentes de perda de desempenho que são reversíveis das irreversíveis. As estimativas obtidas para a taxa de queda do potencial elétrico da célula a combustível ao longo do tempo variaram num intervalo de 108,19 a 318,15 μV.h-1. Estes resultados podem ser considerados satisfatórios quando comparados com valores apresentados na literatura. Finalmente, as imagens obtidas por MET mostraram uma tendência de aumento no tamanho médio das partículas Pt em decorrência do tempo de operação dos MEAs, mas que não implicou numa queda significativa do desempenho das células a combustível do tipo PEM testadas. / Cost and durability still represent the major barriers to the entry of proton exchange membrane fuel cells (PEMFCs) in the market. Thus, the objective of this work was to assess the durability of membrane-electrode assemblies (MEAs) produced at IPEN through the sieve printing method to be used in PEMFCs. For this purpose, an adequate long-term test protocol was developed aiming to obtain estimates of the voltage decay rate and lifetime of the PEMFCs. In the preparation of the MEAs through the sieve printing method commercial Pt/C catalyst and Nafion® 115 membranes were used. In the development of the long-term test protocol some procedures were defined and the fuel cell operational parameters were adjusted, such as cell temperature, H2 and O2 flows. In the analysis of the data obtained from the tests, statistical methods and polarization curves were applied. Samples of the catalyst layer from a MEA used in a long-term test were compared with samples from a control MEA using a Transmission Electron Microscopy (TEM). To evaluate the overall performance of the PEMFCs in long-term operations, a major challenge was to make the separation between the components of performance loss that are reversible from the ones that are irreversible. The estimates for the voltage decay rate ranged from 110 to 318 μV.h-1. These results can be taken as satisfactory when compared with values reported in the literature. Finally, there was an increase in the average size of Pt particles in the catalyst of the long-term tested MEA, as observed in the micrographs. However, this increase did not lead to a significant performance loss of the PEMFCs.
14

Development of Thin CsHSO<sub>4</sub> Membrane Electrode Assemblies for Electrolysis and Fuel Cell Applications

Ecklund-Mitchell, Lars E 03 October 2008 (has links)
In this work the use of the solid acid CsHSO4 as an electrolyte in a hydrogen/oxygen fuel cell or the disassociation of water into hydrogen and oxygen has been investigated. Several issues have been cited in literature regarding the use of CsHSO4 as a solid electrolyte; these include: difficulty interpreting proton conductivity profiles of real membranes, high permeability of the membrane to fuel and product gases, and low mechanical strength. In an attempt to improve our understanding and possibly eliminate these issues, performance characteristics of prepared CsHSO4 membranes have been investigated utilizing various methods of synthesis and membrane fabrication. A consistent method of CsHSO4 membrane construction was developed based on these investigations. In addition, a novel method of sintering to decrease the membrane's permeability to fuel gases was developed and evaluated. The effects of these measures were investigated and tested in a prototype cell for proof of concept of fuel cell and electrolysis applications.
15

Preparation and characterization of proton exchange membranes for direct methanol fuel cells

Zhang, Xiao 17 November 2005 (has links)
Due to the petroleum crisis and its consequent emission problems, fuel cells gain an important place in the application of alternative energy. They are a kind of electrochemical device that converts chemical energy directly into electrical energy. The Direct Methanol Fuel Cells (DMFC) use polymer membranes as the electrolyte; the polymer membranes are capable of conducting hydrogen protons. The fuel cell system is still expensive and the proton exchange membrane has contributed significantly the high cost. At present, perfluorosulfonic acid membranes (PFSA) (e.g. Nafion®, by DuPont) have been widely investigated. However they showed high methanol crossover and high swelling that lead low cell efficiency. The main goal of the thesis is to prepare novel proton exchange membranes to apply in the DMFC. PEG and PA membranes compuestas fueron preparadas. Derivados del ácido fosfórico y lignosulfonados (LS) fueron incluidos en la estructura de la PA para actuar como agentes transportadores de protones. El mecanismo de la conductividad de protón es "hopping". Ellos mostraron el más baja del transporte de metanol.Se obtuvieron también membranas híbridas de LS, preparadas mediante la mezcla de los dos polímeros, LS y PSU, siguiendo el método de precipitación en inmersión. Las propiedades electroquímicas de las membranas de LS fueron caracterizadas. Las membranas de LS alcanzaron conductividades de protón aceptables (10-20 mS/cm) con capacidad de intercambio iónico muy baja (IEC) (60 veces más baja que Nafion). "Membrane electrode assemblies" (MEAs) fueron preparadas y sus rendimientos de celda fueron medidos en una celda individual directa de metanol (DMFC). LS membrana is the highlight point of this thesis. It demonstrated the first that LS is a good proton exchange material although it is a waste from the paper industry. It also proved that porous membrane can be used in the DMFC with acceptable proton conductivity and low methanol permeability, which is a totally new way from the existing literatures.The results have been published on international journals and have been presented on international conferences:1. X. Zhang, A. Glüsen, R. Garcia-Valls, Porous Lignosulfonate membrane for direct methanol fuel cells, accepted by Journal of Membrane Science, 20052. X. Zhang, J. Benavente, R. Garcia Valls, Lignin-based Membranes for Electrolyte Transference, Journal of Power Sources, 145 (2005) 2923. X. Zhang, L. Pitol Filho, C. Torras, R. Garcia Valls, Experimental and Computational Study of Proton and Methanol Permeability through Composite Membranes, Journal of Power Sources, 145 (2005) 2234. J. Benavente, X. Zhang, R. Garcia Valls, Modification of Polysulfone Membranes with Polyethylene Glycol and Lignosulfate: Electrical Characterization by Impedance Spectroscopy Measurements, Journal of Colloid and Interface Science, 285 (2005) 273-2805. X. Zhang, R. Garcia-Valls, Proton transport membrane containing lignin compound for direct methanol fuel cells (Poster), 5th Ibero American Congress on Membrane Science and Technology, 2005, Valencia- Spain 6. X. Zhang, J. Benavente and R. Garcia-Valls, Lignin-based membranes for electrolyte transference (Oral presentation), Fuel Cell Science & Technology, Oct. 2004, Munich- Germany. 7. X. Zhang, R. Garcia-Valls, New membranes for Proton Transport in DMFC (Poster), Euromembrane Sep. 2004, ISBN: 3-930400-65-0, p. 64, Hamburg- Germany, 8. X. Zhang, R. Garcia-Valls, Lignosulfonate Application in Proton Transport Membrane (Oral presentation), 2nd World Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection, May. 2004, Rome- Italy9. X. Zhang, R. Garcia-Valls, Proton Selective Composite Membrane for Direct Methanol Fuel Cell (Oral presentation), 5th NYM (Network Young Membrains) Oct. 2003, ISBN: 84-688-3132-8, p. 199, Barcelona, Spain10. X. Zhang, R. Garcia-Valls, A. Jiménez-López, E. Rodríguez-Castellón and J. Benavente, Electrical and Chemical Surface Characterization of Lignosulfate/Polysulfone Membranes for Fuel Cells Application, International Conference on "New Proton Conducting Membranes and Electrodes for PEM FCs", Oct. 2005, Assisi, Italy. / Debido a la crisis de petróleo y a los problemas de emisión, las pilas de combustible adquieren un lugar importante en la aplicación de la energía alternativa. Son una clase de dispositivo electroquímico que convierte la energía química directamente en energía eléctrica. Las celdas de combustible de metanol (DMFC) usan membranas de polímero como el electrolito; las membranas de polímero son capaces de transportar protones de hidrógeno. El sistema de la celda de combustible todavía es costoso y las membranas de intercambio de protón han contribuido significativamente para el costo elevado.Actualmente, las membranas de ácido perfluorosulfonico (PFSA) (por ejemplo, Nafion ®, de DuPont) ten sido investigadas extensamente. Sin embargo mostraron alto paso de metanol e alto "swelling" lo que lleva a una eficiencia de celda baja.El objetivo principal de la tesis es preparar membranas de intercambio de protón nuevas para la aplicación en DMFC. Membranas compuestas de PEG y de PA fueron preparadas. Derivados del ácido fosfórico y lignosulfonados (LS) fueron incluidos en la estructura de la PA para actuar como agentes transportadores de protones. El mecanismo de conductividad de protón es "hopping". Ellos mostraron el transporte de metanol más bajo.Se obtuvieron también membranas híbridas de LS, preparadas mediante la mezcla de los dos polímeros, LS y PSU, siguiendo el método de precipitación en inmersión. Las propiedades electroquímicas de las membranas de LS fueron determinadas. Las membranas de LS alcanzaron conductividades de protón aceptables (10-20 mS/cm) con capacidad de intercambio iónico muy baja (IEC) (60 veces más baja que Nafion). "Membrane electrode assemblies" (MEAs) fueron preparadas y sus rendimientos de celda fueron medidos en una celda individual directa de metanol (DMFC).Las membranas de LS son el punto principal de esta tesis. Primero se demostró que LS es un material de intercambio de protón muy bueno aunque sea un residuo de la industria de papel. También se probó que membranas porosas pueden ser usadas en DMFC con una conductancia de protón aceptable y baja permeabilidad de metanol, lo que es una manera totalmente nueva comparada a la literatura existente.Los resultados han sido divulgados en revistas internacionales y han sido presentados en conferencias internacionales:1. X. Zhang, A. Glüsen, R. Garcia-Valls, Porous Lignosulfonate membrane for direct methanol fuel cells, accepted by Journal of Membrane Science, 20052. X. Zhang, J. Benavente, R. Garcia Valls, Lignin-based Membranes for Electrolyte Transference, Journal of Power Sources, 145 (2005) 2923. X. Zhang, L. Pitol Filho, C. Torras, R. Garcia Valls, Experimental and Computational Study of Proton and Methanol Permeability through Composite Membranes, Journal of Power Sources, 145 (2005) 2234. J. Benavente, X. Zhang, R. Garcia Valls, Modification of Polysulfone Membranes with Polyethylene Glycol and Lignosulfate: Electrical Characterization by Impedance Spectroscopy Measurements, Journal of Colloid and Interface Science, 285 (2005) 273-2805. X. Zhang, R. Garcia-Valls, Proton transport membrane containing lignin compound for direct methanol fuel cells (Poster), 5th Ibero American Congress on Membrane Science and Technology, 2005, Valencia- Spain6. X. Zhang, J. Benavente and R. Garcia-Valls, Lignin-based membranes for electrolyte transference (Oral presentation), Fuel Cell Science & Technology, Oct. 2004, Munich- Germany.7. X. Zhang, R. Garcia-Valls, New membranes for Proton Transport in DMFC (Poster), Euromembrane Sep. 2004, ISBN: 3-930400-65-0, p. 64, Hamburg- Germany,8. X. Zhang, R. Garcia-Valls, Lignosulfonate Application in Proton Transport Membrane (Oral presentation), 2nd World Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection, May. 2004, Rome- Italy9. X. Zhang, R. Garcia-Valls, Proton Selective Composite Membrane for Direct Methanol Fuel Cell (Oral presentation), 5th NYM (Network Young Membrains) Oct. 2003, ISBN: 84-688-3132-8, p. 199, Barcelona, Spain10. X. Zhang, R. Garcia-Valls, A. Jiménez-López, E. Rodríguez-Castellón and J. Benavente, Electrical and Chemical Surface Characterization of Lignosulfate/Polysulfone Membranes for Fuel Cells Application, International Conference on "New Proton Conducting Membranes and Electrodes for PEM FCs", Oct. 2005, Assisi, Italy La tesis tuvo la cooperación del Forschungszentrum Jülich, Alemania y la doctoranda esta solicitando el titulo de Doctorado Europeo.
16

Dynamic Simulation of MEA Absorption Process for CO2 Capture from Power Plants

Harun, Noorlisa January 2012 (has links)
A dynamic MEA absorption process model has been developed to study the operability of this process in a dynamic fashion and to develop a control strategy to maintain the operation of the MEA scrubbing CO2 capture process in the presence of the external perturbations that may arise from the transient operation of the power plant. The novelty in this work is that a mechanistic model based on the conservation laws of mass and energy have been developed for the complete MEA absorption process. The model developed in this work was implemented in gPROMS. The process response of the key output variables to changes in the key input process variables, i.e., the flue gas flow rate and the reboiler heat duty, are presented and discussed in this study. In order to represent the actual operation of a power plant, the dynamic response of the MEA absorption process to a sinusoidal change in the flue gas flow rate was also considered in the present analysis. The mechanistic dynamic model was applied to develop a basic feedback control strategy. The implementation of a control strategy was tested by changing the operating conditions for the flue gas flow rate. The controlled variables, i.e., the percentage of CO2 absorbed in the absorber column and the reboiler temperature, were maintained around their nominal set point values by manipulating the valve stem positions, which determine the lean solvent feed flow rate at the top of the absorber column, and the reboiler heat duty, respectively. For the sinusoidal test, the amplitude of the oscillations observed for the controlled variables was smaller than those observed for the open-loop tests. This is because the variability of the controlled variables was transferred to the manipulated variable in the closed loop. The mechanistic dynamic model developed in this process can be potentially used as a practical tool that can provide insight regarding the dynamic operation of MEA absorption process. The model developed in this work can also be used as a basis to develop other studies related to the operability, controllability and dynamic flexibility of this process.
17

A Three-Dimensional Coupled Microelectrode and Microfluidic Array for Neuronal Interfacing

Choi, Yoonsu 20 May 2005 (has links)
The objective of this research is to develop a three-dimensional (3-D) microfluidic/ electronic interface system for sustaining and monitoring 3-D neuronal networks. This research work is divided into two parts. One is the development of a 3-D multi-electrode array (MEA) with integrated microfluidic channels. The other is a microneedle array with embedded microelectrodes and microfluidic channels. The 3-D MEA is composed of three elements that are essential for the development and monitoring of 3-D cultures of neurons. These components consist of scaffolds for cellular growth and structural stability, microfluidic channels for cell maintenance and chemical stimulation, and electrodes for electrical stimulation and recording. Two kinds of scaffold structures have been fabricated. The first scaffolding scheme employs a double exposure technique that embeds SU-8 towers into an SU-8 substrate. The second scaffolding mechanism introduces interconnects between towers for the purpose of mechanically supporting 3-D cell cultures and facilitating 3-D synaptic connections. Microfluidic channels are combined for fine control of the cellular microenvironment by means of diffusive and convective fluidic processes. Hollow towers with three-layer side ports were developed by using double exposure techniques and excimer laser ablation. The electrodes are combined into an integrated system that is capable of monitoring electrical activities and the cellular impedances of neurons which are attached to the electrodes. The second part of this research is to fabricate a microneedle array for monitoring brain slices, which will directly detect electrical signals from living brain slices. Although the microneedle array is targeting different 3-D neuronal networks, it also has three components and the fabrication steps are the same as those for the 3-D MEA. To generate the sharp tip, isotropic reactive ion etching (RIE) is performed on tapered SU-8 towers. High aspect ratio tower structures can be effectively generated with SU-8 and tapered shapes are created by backside exposure. The resulting systems will enable a new field of neurobiological research, in which the collective properties of 3-D neuronal circuits can be observed and manipulated with unprecedented detail and precision, and at a level of control not possible in living animals.
18

Effect of Hydrogen Inlets on Planar £gPEM Fuel Cell Stacks

Yeh, Jian-liang 05 August 2010 (has links)
Planar £gPEM Fuel Cell Stacks are designed and fabricated in-house through a deep UV lithography technique, with SU 8 photoresist used as the microstructure mold for the fuel cell flow channel or bipolar plates when micro electroforming. The fuel cell stacks use a new design which means installing the fuel channel into PMMA, by which the fuel supply channel becomes convenient and simplified. The performance of the stack is measured in different inlets, and the effect of the hydrogen inlets is explained. The experimental results are presented in the form of polarization VI curves and PI curves for the different types of inlet. Furthermore, the influence of the inlets is presented and discussed.
19

On the Study of Proton Exchange Membrane Fuel Cell¡XThe Fabrication and Performance Analysis of MEA

Leu, Chun-Ei 11 July 2000 (has links)
This research is to develop procedures on the fabrication of membrane electrode assembly (MEA), which is the heart of the Proton Exchange Membrane Fuel Cell. Sensitivity studies of the manipulated variable, such as pressure, temperature, and time, in the hot press process, which is adopted in the assembling on the performance of the MEA are also performed. The developed products on the cleaning of membrane as well as the hot press of MEA have been verified through many experiments. The tests of the MEA¡¦s thus produced reveal that temperature and pressure in hot press process have significant influence on MEA performance. Both have to be kept in a suitable range. Optimal operating conditions in the hot press process may be achieved by conducting more experiments and a detail understanding on the internal structure variation of membrane under high pressure and temperature condition.
20

Development of a Carbon Dioxide Continuous Scrubber (CDOCS) System for Alkaline Fuel Cells

Wallace, Jamie Stuart January 2006 (has links)
Alkaline fuel cells (AFC's) using renewable fuels are a developing technology capable of meeting market niches in standby, standalone and distributed power generation. AFC's generate electricity, heat and water using hydrogen and oxygen as fuels. While AFC's have been known and the principles demonstrated for over sixty years, their use has been restricted primarily to space applications. Recent technological developments have seen the cost of AFC stacks fall considerably; this together with several other advantages over competing fuel cell technology, has rekindled interest in commercial systems. The main deterrent to wide spread commercialisation of AFC systems is susceptibility to carbon dioxide (CO2) in atmospheric air used as the oxygen supply. AFC's require a low cost, low energy, continuous scrubbing device to reduce CO2 in air from approximately 380 parts per million (ppm) atmospheric concentration to below 50 ppm. Current technology to overcome this problem, a solid expendable absorbent called soda lime, is not viable for commercial systems. The project scope included concept generation of a device to remove CO2 from air, the development of a CO2 measurement technique, investigation of chemistry and flow phenomena to determine design relations, and product design and embodiment. The scrubber system conceived specifically for AFC systems uses the temperature swing chemistry of a liquid chemical absorbent, monoethanolamine, and a packed bubble column apparatus to provide intimate gas-liquid interaction. Prototype development proved the Carbon Dioxide Continuous Scrubber (CDOCS) concept and a Patent Cooperation Treaty (PCT) patent was granted, followed by a full American patent. A gas chromatographic measurement technique was developed to measure low ppm concentration CO2 in air, enabling regular monitoring of scrubbed gas. Carbon dioxide was separated from a small sample of scrubbed air by chromatographic columns, and the gases analysed with a thermal conductivity detector. The GC system was capable of measuring to 10 ppm with good resolution and accuracy. Experimental studies were carried out to characterise the flow dynamics and absorption phenomena in the packed bubble column absorber. The relationship between absorption performance and gas-liquid contact time, an important operating parameter for use with AFC's, was theoretically determined and later confirmed by experiment. The regeneration process was studied and the optimal regenerator design determined to be second, smaller packed bubble column. Experiments were conducted to establish design relations for regeneration temperature, flush gas flow rate and the effect of multiple regeneration cycles. A prototype CDOCS system was built to enable experimental characterisation of scrubbing performance as a function of primary design and operating parameters including liquid depth, regenerator operating temperature and solution composition. This resulted in a good understanding of the system, and an optimised experimental run was performed for cost and performance comparison to existing scrubbing technology. The CDOCS was capable of reducing CO2 in air from 380 to 80 ppm for thirty days, providing low cost, low maintenance scrubbing compared to soda lime. The capital cost of the CDOCS is considerably more than for soda lime scrubbers, and the penalty for extended operation is parasitic power consumption by the CDOCS system totalling less than 7% of fuel cell output. It is suggested that a combination of the two technologies be used initially to provide effective, low cost scrubbing for AFC and CDOCS co-development. Future work on the CDOCS project should include reduction of chemical vapour carry over to the fuel cell, followed by integration with an AFC system. This would allow further development, refinement and design for production to reduce capital cost.

Page generated in 0.0275 seconds