• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 23
  • 9
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 124
  • 19
  • 17
  • 17
  • 17
  • 15
  • 13
  • 12
  • 12
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Environment and genetic background affecting endophyte-grass symbiosis

Wäli, P. (Piippa) 31 August 2006 (has links)
Abstract Mutualism is often conditional and the associations vary from antagonism to mutualism along environmental conditions and genotypes of interacting species. I studied antagonism-mutualism continuum hypothesis of symbiosis experimentally using two different Epichloë/Neotyphodium endophytes and their host grasses, agricultural meadow fescues and natural fine fescue, as study systems. These systemic fungal endophytes live asymptomatically within aerial tissues of grasses, and are vertically transmitted to the next grass generation via seeds. Thus, asexual endophyte strains are dependent on the growth, survival and reproduction of their hosts. Epichloë/Neotyphodium endophytes are considered plant mutualists, because they improve the resistance of the host against various stresses, e.g. herbivores. In addition to experimental approach, I examined prevalence and genetic structure of Epichloë festucae in natural grass populations. Finally, current knowledge concerning grass endophytes was reviewed and the effects of variable environment and genetic background on the ecology and the evolution of grass-endophyte symbiosis were discussed. The endophyte improved the performance of the agronomic meadow fescues, but the beneficial effects were dependent on the grass cultivar and the growth environment. The endophyte-infected (E+) meadow fescues were more susceptible to the pathogenic snow molds and they suffered increased winter damage compared to the endophyte-free (E-) plants. Many natural Festuca rubra and F. ovina populations were either endophyte-free or had low infection frequency. The highest infection frequencies were found in subarctic areas where the infection incidence differed between habitats. Twenty out of the 25 E. festucae genotypes detected were carrying multiple alleles in microsatellite loci indicating multiple infections or vegetative hybridization of the fungus. A dominant genotype (63.5% of all isolates) occurred in all populations suggesting that this fungus is mainly asexual. E+ F. ovina seedlings performed worse than endophyte-free E- seedlings. In F. rubra, the river bank originated E+ seedlings allocated fewer, but longer and heavier tillers than the other seedlings indicating possible improved performance of the endophyte infected grasses in harsh river bank conditions. In short, I detected both positive and negative effects of endophyte infection on grasses varying along species, environment and genotypic background of study subjects. The results support the antagonism-mutualism continuum hypothesis.
82

Možnosti revitalizace potoka v intravilánu města / Possibilities of stream restoration in urban environment

Zouhar, Radim January 2015 (has links)
The thesis is focused on the options of stream restoration with its surroundings in a place of nature area „Na Loukách“ in town district „Mokrá Hora“. The thesis also describes current condition and development of the land use of focused area. There is junction of three creeks in the focused area. In part of this area there is not original depth of ground water surface due to adjustment of Rakovec creek. This thesis introduces three options of increasing depth of ground water surface. Evaluation of the current condition of creeks was performed by the HEM method. Hydraulic calculations were made in HEC-RAS program.
83

Současný výskyt světlíků ( Euphrasia ) v Krkonoších a zhodnocení vlivu doby seče na jejich početnost / Current occurrence of eyebright (Euphrasia) in the Krkonoše (Giant) Mountains and the evaluation of the effect of the time of mowing

Blahník, Jan January 2012 (has links)
At the time the Black and Red List of the Vascular Plants of the Krkonoše (Giant) Mountains was being compiled it was found that no information was available about the distribution of eyebright (Euphrasia) or other facts concerning this hemiparasite growing in the Krkonoše. The aim of this work was to fill the gap. This was to be done by creating a GIS layer with the current distribution of eyebright in the mountains, by analysing the soils taken in places of eyebright occurrence, in neighbouring places and those closely resembling them but without eyebright. The soils were taken each time from five places in the particular locality and were analysed as a mixed sample. In all, 107 mixed soil samples were taken, of which 53 in places where eyebright occurred and in 54 similar places where eyebright was absent. Eyebright grows in places with a higher pH and it performs better in lower available phosphorus concentration. Management test was used to test the earlier time of mowing meadows containing eyebright, when a larger number of flowering eyebright occurs among the plants in comparison with the number of flowering eyebright on surfaces mown at a later time.; Management testing was carried out from June to July 2011 in six localities, with five plots in each locality, in the Eastern and Western...
84

Klasifikace lučních porostů v Krkonoších s využitím leteckých hyperspektrálních dat a s pomocí vector machines klasifikace / Classification of meadow vegetation in the Krkonoše Mts. using aerial hyperspectral data and support vector machines classifier

Hromádková, Lucie January 2015 (has links)
Meadow vegetation in the Krkonoše Mountains National Park is classified in this master thesis using aerial hyperspectral data from sensor AISA and Support Vector Machines (SVM) and Neural Networks (NN) classification algorithms. The main goals of the master thesis are to determine the best settings of SVM parameters and to propose an ideal design for a training dataset for this classification algorithm and mapping of the meadows in the Krkonoše mountains. The criterion of the tests will be the result of classification accuracy (confusion matrices and kappa coefficient). The additional goal of the master thesis is to compare performances of both utilized classifiers, especially regarding the amount of training pixels necessary for successful classification of the mountainous meadow vegetation. Classification maps of the area of interest and Python scripts are the main outputs of the master thesis. These outputs will be handed over to the Administration of the Krkonoše Mountains National Park for further utilization in the monitoring and protecting these valuable meadow vegetation communities. Key words: hyperspectral data, AISA, Support Vector Machines, Neural Networks, training dataset, mountainous meadow vegetation
85

Forage Yield and Quality of Binary Grass-Legume Mixtures of Tall Fescue, Orchardgrass, Meadow Brome, Alfalfa, Birdsfoot Trefoil, and Cicer Milkvetch

Cox, Steven R. 01 May 2013 (has links)
Rising fertilizer prices have led a return to the use of grass-legume mixtures to reduce N costs and improve pasture productivity. The objective of this study was to determine optimal species combinations of binary grass-legume mixtures to improve forage production and pasture nutritive value in irrigated pastures of the Intermountain West. The study was conducted at the Utah State University Intermountain Pature Research Facility near Lewiston, UT. Tall Fescue (TF), Orchardgrass (OG), and meadow brome (MB) were grown with alfalfa (ALF), birdsfoot trefoil (BFTF), and cicer milkvetch (CMV) in legume-grass mixes and monocultures at planting ratios of 25:75, 50:50, 75:25. Grass monocultures were fertilized with 0 (0 N), 67 (67 N), or 134 kg N ha-1 (134 N). Forage was harvested four times each season during 2011-2012. Forage of the mixtures and monocultures from the first and third harvests was analyzed for crude protein (CP) and neutral-detergent fiber (NDF). Average forage production of the unfertilized TF, MB, and OG monocultures was 11.03, 9.76, and 8.10 Mg ha-1, respectively. TF-ALF, OG-ALF, and MB-ALF grass-legume mixes averaged 24.0, 35.0, and 41.0% higher forage production than their respective unfertilized grass monocultures. The grass-legume mixtures with the highest CP were MB-ALF 159, TF-ALF 159, and TF-OG-159 g kg-1 and average 59, 43 and 51% higher than their respective unfertilized grass monocultures. Likewise, the mixtures with the lowest NDF were OG-ALF 453 g kg-1, OG-BFTF 469 g kg-1, and MB-ALF 480 g kg-1. These mixtures had 10, 7, and 18% lower NDF than their respective unfertilized grass monocultures. Individual harvests had similarly higher yields and CP, with lower NDF for the mixtures than the unfertilized grass monocultures. The grass-legume mixture with the 50:50 planting ratio were most productive and had high forage quality. The grass-legume mixtures had similar forage production as the grass monocultures at 134 kg N ha-1. The grass-legume mixtures also had higher CP and lower NDF than the grass monocultures. Cicer milkvetch did not perform well in irrigated pastures. Grass-legume mixtures with ALF and BFTF can be used to replace commercial N while increasing forage nutritive value.
86

Škola, základ života - Soubor školských staveb v Ostravě na Černé louce / School, the Foundation of Life – a Complex of Educational Buildings in Ostrava, Cerna louka

Knežníková, Zuzana January 2014 (has links)
The main idea of the project is the ambition to create an ageless school design, which is able to react flexibly to the constantly evolving educational system and changing space requirements. Philosophy is based on the principle of "open school". School as an important public building has a great potential to act as a catalyst within the neighbourhood. On one hand, it is open to the public by the means of shared facilities (library, gymnasium, multipurpose hall, art classrooms, language labs…). But on the other hand, openness is also important within the school itself. School can be understood as a small community. And because every community needs a public space as a platform for common activities, the school may have its own in the form of a central atrium. It acts as a "piazza", where numerous diverse activities are allowed to happen. Proposal for a school organization is based on the ability of social integration, which is gradually formulated throughout the childhood.
87

Škola, základ života - Soubor školských staveb v Ostravě na Černé louce / School, the Foundation of Life – a Complex of Educational Buildings in Ostrava, Cerna louka

Gallo, Robert January 2014 (has links)
The aim of the diploma thesis was to find right solution for building that represents school in complicated conditions of Ostrava"s city center. School stands on the border between the city and nature.
88

Fire Effects in Montane Meadows

Deak, Rosie 01 March 2022 (has links) (PDF)
The impact of forest fires on downstream meadow communities across California is of great ecological interest, as meadows are an important source of biodiversity in this region. Over a century of fire suppression has led to increased forest stand densities, which in turn has resulted in less water availability due to increased transpiration of densely growing trees. This potentially has left less available water for downstream plant communities in meadows. If true, then high mortality wildfires in surrounding forest are predicted to lead to an increase in available downstream moisture where obligate and facultative-wetland taxa increase and dry-adapted upland taxa decline. Here, we test this hypothesis using a dataset of 103 California montane meadows sampled before and after fire over the last 20 years. Using long term meadow monitoring data, compositional turnover is calculated for each plot from before and after fire and then evaluated against the area of 100% mortality, postfire relative-precipitation, meadow type, and proximity of the meadow to fire. We hypothesize that mortality, post-fire precipitation, and site type influence compositional turnover in meadows, regardless of proximity to the burn area. We find that compositional turnover is influenced by mortality but not by meadow type, relative precipitation, or the proximity to fire perimeter. Specifically, turnover was greater in meadows in higher mortality catchments. We then used a combination of linear models and NMDS to determine whether specific functional groups were driving higher turnover rates, expecting increases in obligate and facultative-wetland groups following high mortality fires. However we found no evidence for this. The high variation amongst meadows and their respective fire histories yielded no consistent shifts in community composition. Our findings highlight that landscape scale fire effects can interact strongly affect plant communities outside of fire perimeters, but that this does not lead to predictable shifts in wetland community composition. As fire behavior and drought are projected to become more extreme, we can expect that meadow composition will continue to change but not in predictable ways.
89

The hidden life of plants : fine root dynamics in northern ecosystems

Blume-Werry, Gesche January 2016 (has links)
Fine roots constitute a large part of the primary production in northern (arctic and boreal) ecosystems, and are key players in ecosystem fluxes of water, nutrients and carbon. Data on root dynamics are generally rare, especially so in northern ecosystems. However, those ecosystems undergo the most rapid climatic changes on the planet and a profound understanding of form, function and dynamics of roots in such ecosystems is essential. This thesis aimed to advance our knowledge about fine root dynamics in northern ecosystems, with a focus on fine root phenology in natural plant communities and how climate change might alter it. Factors considered included thickness and duration of snow cover, thawing of permafrost, as well as natural gradients in temperature. Experiments and observational studies were located around Abisko (68°21' N, 18°45' E), and in a boreal forest close to Vindeln (64°14'N, 19°46'E), northern Sweden. Root responses included root growth, total root length, and root litter input, always involving seasonal changes therein, measured with minirhizotrons. Root biomass was also determined with destructive soil sampling. Additionally, aboveground response parameters, such as phenology and growth, and environmental parameters, such as air and soil temperatures, were assessed. This thesis reveals that aboveground patterns or responses cannot be directly translated belowground and urges a decoupling of above- and belowground phenology in terrestrial biosphere models. Specifically, root growth occurred outside of the photosynthetically active period of tundra plants. Moreover, patterns observed in arctic and boreal ecosystems diverged from those of temperate systems, and models including root parameters may thus need specific parameterization for northern ecosystems. In addition, this thesis showed that plant communities differ in root properties, and that changes in plant community compositions can thus induce changes in root dynamics and functioning. This underlines the importance of a thorough understanding of root dynamics in different plant community types in order to understand and predict how changes in plant communities in response to climate change will translate into root dynamics. Overall, this thesis describes root dynamics in response to a variety of factors, because a deeper knowledge about root dynamics will enable a better understanding of ecosystem processes, as well as improve model prediction of how northern ecosystems will respond to climate change.
90

The hidden life of plants : fine root dynamics in northern ecosystems

Blume-Werry, Gesche January 2016 (has links)
Fine roots constitute a large part of the primary production in northern (arctic and boreal) ecosystems, and are key players in ecosystem fluxes of water, nutrients and carbon. Data on root dynamics are generally rare, especially so in northern ecosystems. However, those ecosystems undergo the most rapid climatic changes on the planet and a profound understanding of form, function and dynamics of roots in such ecosystems is essential. This thesis aimed to advance our knowledge about fine root dynamics in northern ecosystems, with a focus on fine root phenology in natural plant communities and how climate change might alter it. Factors considered included thickness and duration of snow cover, thawing of permafrost, as well as natural gradients in temperature. Experiments and observational studies were located around Abisko (68°21' N, 18°45' E), and in a boreal forest close to Vindeln (64°14'N, 19°46'E), northern Sweden. Root responses included root growth, total root length, and root litter input, always involving seasonal changes therein, measured with minirhizotrons. Root biomass was also determined with destructive soil sampling. Additionally, aboveground response parameters, such as phenology and growth, and environmental parameters, such as air and soil temperatures, were assessed. This thesis reveals that aboveground patterns or responses cannot be directly translated belowground and urges a decoupling of above- and belowground phenology in terrestrial biosphere models. Specifically, root growth occurred outside of the photosynthetically active period of tundra plants. Moreover, patterns observed in arctic and boreal ecosystems diverged from those of temperate systems, and models including root parameters may thus need specific parameterization for northern ecosystems. In addition, this thesis showed that plant communities differ in root properties, and that changes in plant community compositions can thus induce changes in root dynamics and functioning. This underlines the importance of a thorough understanding of root dynamics in different plant community types in order to understand and predict how changes in plant communities in response to climate change will translate into root dynamics. Overall, this thesis describes root dynamics in response to a variety of factors, because a deeper knowledge about root dynamics will enable a better understanding of ecosystem processes, as well as improve model prediction of how northern ecosystems will respond to climate change.

Page generated in 0.051 seconds