811 |
Implementation Issues on MEMS - A Study on System IdentificationWolfram, Heiko 28 October 2005 (has links)
A nonlinear identification scheme is provided for a LTI-system with a feedback-nonlinearity, which depends on the input and LTI-system output. This is especially the case for MEMS, where the electrostatic field depends on the displacement and input voltage. The fact, that the algorithm only requires a matrix inversion and singular value decomposition, makes it possible to use the identification scheme for online-estimation. There is also no other a-priori knowledge about the system, except the order, needed.
|
812 |
Beiträge zur Entwicklung einer Technologieplattform für die Herstellung von oberflächennahen Mikrostrukturen mit hohen AspektverhältnissenLohmann, Christian 29 June 2006 (has links)
Die Arbeit beschreibt die Entwicklung und Evaluierung einer Technologieplattform für
die Herstellung von oberflächennahen Mikrostrukturen mit hohen Aspektverhältnissen.
Grundlage dieser Technologieplattform stellt ein neuartiges Konzept zur mechanischen
und elektrischen Kontaktierung beweglicher Elemente mittels spezieller Träger dar, deren
typische Breite unterhalb eines Mikrometers liegt. Basierend hierauf werden drei unterschiedliche
Prozessabläufe zur Herstellung der Mikrostrukturen, auch als Air gap Insulated
Microstructures (AIM) bezeichnet, vorgestellt. Der Schwerpunkt dieser Arbeit liegt dabei
auf der mehrschichtigen Trägervariante mit Isolationsebene und Leitungsebene. Verschiedene
Schichtkombinationen, bestehend aus Siliziumnitrid, Siliziumdioxid und Aluminium,
sind in ihrem mechanischen, thermischen und Langzeitverhalten charakterisiert
und im Hinblick auf ihre Anwendbarkeit für die Träger bewertet. Für die Strukturierung
der Siliziumelemente wird ein Verfahren basierend auf einem CF-Polymer als Passivierungsschicht
beschrieben. Neben verschiedenen Ausfallmechanismen für die Passivierung
werden gezielte Optimierungen der Abscheide- und Ätzprozesse erläutert sowie deren Resultate
dargestellt. Für die vollständige Trennung von Substrat und seismischer Masse ist
eine isotrope, vom Aspektverhältnis nahezu unabhängige Siliziumstrukturierung nötig.
Entsprechende Betrachtungen und Untersuchungen hierzu, unter Verwendung der Reaktionsgase
SF6 und O2, stellen den Abschluss der Untersuchungen zur Prozessentwicklung
dar. Um die Leistungsfähigkeit der Technologieplattform zu demonstrieren, erfolgt die
Herstellung verschiedener Sensoren und Aktoren. Die Charakterisierung dieser Elemente
in ihrem mechanischen, thermischen und Langzeitverhalten stellt den Abschluss dieser
Arbeit dar.
|
813 |
Algorithmische Optimierung von Teststrukturen zur Charakterisierung von Mikrosystemen auf WaferebeneStreit, Petra 04 April 2009 (has links)
Diese Diplomarbeit beschäftigt sich mit der Entwicklung von Teststrukturen zur
Charakterisierung von Mikrosystemen auf Waferebene. Sie dienen zur Bestimmung
von Prozesstoleranzen. Ziel dieser Arbeit ist es, einen Algorithmus zu entwickeln,
mit dem Teststrukturen optimiert werden können. Dazu wird ein Ansatz zur Optimierung
von Teststrukturen mittels eines Genetischen Algorithmus untersucht.
Grundlage für diesen ist eine Bewertung der Strukturen hinsichtlich der Sensitivität
gegenüber den Fertigungsparametern und der Messbarkeit der Eigenmoden.
Dem Leser wird zuerst ein Einblick in das Themengebiet und in die Verwendung von
Teststrukturen gegeben. Es folgen Grundlagen zur Fertigung und Messung von Mikrosystemen,
zur Parameteridentifikation, sowie zu Optimierungsalgorithmen. Anschließend
wird ein Bewertungs- und Optimierungskonzept, sowie eine Softwareimplementation
für die sich aus der Optmierung ergebenden Aufgaben, vorgestellt.
Unter anderem eine Eigenmodenerkennung mittels Neuronalem Netz und einer auf
der Vandermond’schen Matrix basierende Datenregression. Die Ergebnisse aus der
Umsetzung durch ein Testframework werden abschließend erläutert. Es wird gezeigt,
dass die Optimierung von Teststrukturen mittels Genetischem Algorithmus
möglich ist. Die dargestellte Bewertung liefert für die untersuchten Teststrukturen
nachvollziehbare Resultate. Sie ist in der vorliegenden Form allerdings auf Grund
zu grober Differenzierung nicht für den Genetischen Algorithmus geeignet. Entsprechende
Verbesserungsmöglichkeiten werden gegeben. / This diploma thesis deals with the development of test-structures for the characterization
of microsystems on wafer level. Test-structures are used for the determination
of geometrical parameters and material properties deviations which are
influenced by microsystem fabrication prozesses. The aim of this work is to establish
principles for the optimization of the test-structures. A genetic algorithm as
an approach for optimization is investigated in detail. The reader will get an insight
in the topic and the application of test-structures. Fundamentals of fabrication and
measurement methods of microsystems, the parameter identification procedure and
algorithms for optimization follow. The procedures and a corresponding software
implementation of some applied issues, which are needed for the optimization of
test structures, are presented. Among them are neural network algorithms for mode
identification and a data regression algorithm, based on Vandermonde Matrix.
Results of implemented software algorithms and an outlook conclude this work. It
is shown, that the optimization of test-structure using a genetic algorithm is possible.
An automated parameter variation procedure and the extraction of important
test-structures parameters like sensitivity and mode order are working properly.
However, the presented evaluation is not suitable for the genetic algorithm in the
presented form. Hence, improvements of evaluation procedure are suggested.
|
814 |
Mikromechanický senzor a laserová fotoakustika pro diagnostiku v plynech / Micro-mechanical Sensor and Laser Photoacoustics for Diagnostics in GasesVlasáková, Tereza January 2015 (has links)
The aim of the thesis is to study mechanical properties of nanomaterials (multi-layer graphene, silicon, mica) suitable to be used as novel pressure sensors in laser photoacoustic spectroscopy. Membranes (diameter ~ 4 mm, thickness ~ 100 nm) were prepared by mechanical exfoliation method and then attached to a glass window in several slightly different designs. Movement of these membranes was detected using HeNe laser beam reflected from the membrane's surface onto a position sensitive detector. Methanol was used as a model gas and the signal was collected from studied element and microphone simultaneously. Acoustic wave, induced inside a measuring cell by periodic thermal variations, causes the membranes to move. The movement of a membrane is influenced by its mechanical properties, which is possible to determine by fitting the measured data into a mathematical model. Comparison of the output data of all membranes' measurements shows, that the signal intensity is influenced by the method of attaching membrane to a glass window and by volume of free space on a side of a membrane. Metallization of the membrane's surface (~ 70 nm) decreases its springiness thus decreases the sensitivity. Several membranes reached sensitivity comparable with top class microphone.
|
815 |
Finite element analysis of electrostatic coupled systems using geometrically nonlinear mixed assumed stress finite elementsLai, Zhi Cheng 05 May 2008 (has links)
The micro-electromechanical systems (MEMS) industry has grown incredibly fast over the past few years, due to the irresistible character and properties of MEMS. MEMS devices have been widely used in various fields such as aerospace, microelectronics, and the automobile industry. Increasing prominence is given to the development and research of MEMS; this is largely driven by the market requirements. Multi-physics coupled fields are often present in MEMS. This makes the modelling and analysis o such devices difficult and sometimes costly. The coupling between electrostatic and mechanical fields in MEMS is one of the most common and fundamental phenomena in MEMS; it is this configuration that is studied in this thesis. The following issues are addressed: 1. Due to the complexity in the structural geometry, as well as the difficulty to analyze the behaviour in the presence of coupled fields, simple analytical solutions are normally not available for MEMS. The finite element method (FEM) is therefore used to model electrostaticmechanical coupled MEMS. In this thesis, this avenue is followed. 2. In order to capture the configuration of the system accurately, with relatively little computational effort, a geometric non-linear mixed assumed stress element is developed and used in the FE analyses. It is shown that the developed geometrically non-linear mixed assumed stress element can produce an accuracy level comparable to that of the Q8 element, while the number of the degrees of freedom is that of the Q4 element. 3. Selected algorithms for solving highly non-linear coupled systems are evaluated. It is concluded that the simple, accurate and quadratic convergent Newton-Raphson algorithm remains best. To reduce the single most frustrating disadvantage of the Newton method, namely the computational cost of constructing the gradients, analytical gradients are evaluated and implemented. It is shown the CPU time is significantly reduced when the analytical gradients are used. 4. Finally, a practical engineering MEMS problem is studied. The developed geometric nonlinear mixed element is used to model the structural part of a fixed-fixed beam that experiences large axial stress due to an applied electrostatic force. The Newton method with analytical gradients is used to solve this geometrically nonlinear coupled MEMS problem. / Dissertation (MEng (Mechanical))--University of Pretoria, 2007. / Mechanical and Aeronautical Engineering / unrestricted
|
816 |
Patterned and Infiltrated Vertically Aligned Carbon Nanotube Ultra-Black MaterialsLaughlin, Kevin 17 June 2022 (has links)
Ultra-black materials reflect less than 1% of incident light, and are used in a wide variety of applications from low signal detector systems, to jewelry. The darkest ultra-black materials are made with vertically aligned carbon nanotubes (VACNTs). One downside to these VACNT based ultra-black material, is they are extremely fragile, and the types of surfaces they can be grown on is limited. Here I created a strengthened ultra-black material that can withstand light handling and drying from water exposure, and can be transferred to other substrates while remaining ultra-black. I also present theoretical models with supporting data on how to make the current darkest films even darker. I was able to create a material that had a 0.008% reflectance, making it the new darkest material. Using VACNTs as a scaffold, I created high aspect-ratio patterned VACNT structures that were encompassed by a carbon encapsulation layer. I was able to expose weaknesses in the encapsulation layer by depositing a thin layer of silicon on the VACNTs inside the carbon encapsulation. Inserting lithium into the silicon caused the silicon to expand, resulting in stress on the encapsulation layer. This strain from the silicon stressed the encapsulation layer of the different geometries, exposing weak points. Using VACNTs as a template, I created high aspect ratio 3D structures made from copper using Galvanic displacement and electroplating.
|
817 |
Individualized Motion Monitoring by Wearable Sensor : Pre-impact fall detection using SVM and sensor fusion / Individanpassad rörelsemonitorering med hjälp av bärbara sensorerCarlsson, Tor January 2015 (has links)
Among the elderly, falling represents a major threat to the individual health, and is considered as a major source of morbidity and mortality. In Sweden alone, three elderly are lost each day in accidents related to falling. The elderly who survive the fall are likely to be suffering from decreased quality of life. As the percentage of elderly increase in the population worldwide, the need for preventive methods and tools will grow drastically in order to deal with the increasing health-care costs. This report is the result of a conceptual study where an algorithm for individualized motion monitoring and pre-impact fall detection is developed. The algorithm learns the normal state of the wearer in order to detect anomalous events such as a fall. Furthermore, this report presents the requirements and issues related to the implementation of such a system. The result of the study is presented as a comparison between the individualized system and a more generalized fall detection system. The conclusion is that the presented type of algorithm is capable of learning the user behaviour and is able to detect a fall before the user impacts the ground, with a mean lead time of 301ms. / Bland äldre är risken för att drabbas av fallrelaterade skador överhängande, ofta med svåra fysiska skador och psykiska effekter som följd. Med en ökande andel äldre i befolkningsmängden beräknas även samhällets kostnad för vård att stiga. Genom aktiva samt preventiva åtgärder kan graden av personligt lidande och fallre- laterade samhällskostnader reduceras. Denna rapport är resultatet av en konceptuell studie där en algoritm för aktiv, individanpassad falldetektion utvecklats. Algoritmen lär sig användarens normala rörelsemönster och skall därefter särskilja dessa från onormala rörelsemönster. Rapporten beskriver de krav och frågeställningar som är relevanta för utvecklingen av ett sådant system. Vidare presenteras resultatet av studien i form av en jämförelse mellan ett individanpassat och generellt system. Resultatet av studien visar att algoritmen kan lära sig användarens vanliga rörelsemönster och därefer särskilja dessa från ett fall, i medelvärde 301ms innan användaren träffar marken.
|
818 |
Low-Noise High-Precision Readout Circuits for Capacitive MEMS AccelerometerYang, Kuilian 04 1900 (has links)
Over the past two decades, Micro-Electro-Mechanical System (MEMS) based accelerometers, benefiting from relatively simple structure, low-power consumption, high sensitivity, and easy integration, have been widely used in many industrial and consumer electronics applications. For the high precision accelerometers, a significant technical challenge is to design a low-noise readout circuit to guarantee the required high resolution of the entire integrated system.
There are three main approaches for improvement of the noise and offset of the readout circuit, namely auto-zero (AZ) and correlated double sampling (CDS) for the switched- capacitor (SC) circuit and chopper stabilization (CHS) for the continuous-time circuit.
This thesis investigates the merits and drawbacks of all three techniques for reading the capacitance of a low noise MEMS accelerometer developed in our group. After that, we compare the different effects of the three technologies on noise, offset, output range, linearity, dynamic range, and gain. Next, we present the design of the most suitable structure for our sensor to achieve low noise, low offset, and high precision within the working frequency. In this thesis, the design and post-layout simulation of the circuit is proposed, and the fabrication is currently in progress. The readout circuit has reached the noise floor of the sub-μg, which meets the strict requirements of low noise MEMS
capacitance-to-voltage converter. A high-performance accelerometer system is regarded
as the core of a low-noise, high-resolution geophone. We show that together with the MEMS accelerometer sensor, the readout circuit provides competitive overall system noise and guarantees the required resolution.
|
819 |
Advancements of a Silicon-on-Insulator Thermoelectric Sensor for Biomedical ApplicationsAlexis Margaret Corda (10716507) 30 April 2021 (has links)
Heat can be used as a reliable biomarker of cell metabolism. Assessing changes in metabolic activity is useful to study normal bioactivity or factors which may stimulate or inhibit cell proliferation. Methods which measure the heat of cell metabolism over time must be sensitive to the small changes. Thermoelectric sensors, which work by the Seebeck effect, are one method which has shown adequate sensitivity. This type of sensor directly converts heat energy into electrical energy without the use of a power source. Current research into sensors for cell metabolism may list lengthy, complex, and expensive procedures or include materials with rare or toxic elements. This work establishes a design approach of a silicon-based thermoelectric sensor for cell metabolism measurement which incorporates abundant and non-toxic materials and a simple procedure based on standard MEMS fabrication methods. The foundation for the sensor design is discussed. Fabrication was done using optical lithography, reactive ion etching, and electron beam evaporation which are standard and well known in industry. Sensor quality was characterized successfully based on the defined design parameters. Preliminary data has been recorded on the Coli cell metabolism. Finally, recommendations to improve heat insulation, include sensor calibration, and optimize manufacturing parameters are given for future work on this design to advance sensitivity and commercial potential.
|
820 |
Theoretical and Experimental Investigations of the Dynamics of Axially Loaded - Microstructures with Exploitation for MEMS Resonator-Based Logic DevicesTella, Sherif Adekunle 05 1900 (has links)
In line with the rising demand for smarter solutions and embedded systems, Microelectromechanical systems (MEMS) have gained increasing importance for digital computing devices and Internet-of-Things (IoT) applications, most notably for mobile wearable devices. This achievement is driven by MEMS resonators' inherent properties such as simplicity, sensitivity, reliability, and low power consumption. Hence, they are being explored for ultra-low-power computing machines. Several fundamental digital logic gates, switching, and memory devices have been demonstrated based on MEMS microstructures' static and dynamic behavior. The interest of researchers in using MEMS resonators is due to seeking an alternative approach to circumvent the notable current leakage and power density problems of complementary metal-oxide-semiconductor (CMOS) technology. The continuous miniaturization of CMOS has increased the operating speed and reduces the size of the device. However, this has led to a relative increase in the leakage energy. This drawback in CMOS has renewed the interest of researchers in mechanical digital computations, which can be traced back to the work of Charles Babbage in 1822 on calculating engines.
This dissertation presents axially-loaded and coupled-MEMS resonators investigations to demonstrate memory elements and different logic functions. The studies in this dissertation can be categorized majorly into three parts based on the implementation of logic functions using three techniques: electrothermal frequency tunability, electrostatic frequency modulations, and activation/deactivation of the resonant frequency. Firstly, the influence of the competing effects of initial curvature and axial loads on the mechanical behavior of MEMS resonator arches are investigated theoretically to predict the tunability of arches under axial loads. Then, the concept of electrothermal frequency tunability is used to demonstrate fundamental 2-bit logic gates. However, this concept consumes a considerable amount of energy due to the electrothermal technique. Next, the dynamic memory element and combinational logic functions are demonstrated using the concept of electrostatic frequency modulation. Though this approach is energy efficient compared to the electrothermal technique, it does not support the cascadability of MEMS resonator-based logic devices. Lastly, complex multifunctional logic gates are implemented based on selective modes activation and deactivation, resulting in significant improvement in energy efficiency and enabling cascadability of MEMS resonator-based logic devices.
|
Page generated in 0.0288 seconds