• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 523
  • 187
  • 122
  • 61
  • 44
  • 37
  • 24
  • 24
  • 23
  • 18
  • 13
  • 7
  • 5
  • 5
  • 3
  • Tagged with
  • 1325
  • 415
  • 246
  • 195
  • 165
  • 144
  • 144
  • 143
  • 120
  • 115
  • 97
  • 94
  • 73
  • 72
  • 70
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

A Large-Stroke Electrostatic Micro-Actuator

Towfighian, Shahrzad January 2010 (has links)
Parallel-plate electrostatic actuators driven by a voltage difference between two electrodes suffer from an operation range limited to 30% of the gap that has significantly restrained their applications in Microelectromechanical systems (MEMS). In this thesis, the travel range of an electrostatic actuator made of a micro-cantilever beam electrode above a fixed electrode is extended quasi-statically to 90% of the capacitor gap by introducing a voltage regulator (controller) circuit designed for low frequency actuation. The developed large-stroke actuator is valuable contribution to applications in optical filters, optical modulators, digital micro-mirrors and micro-probe based memory disk drives. To implement the low-frequency large-stroke actuator, the beam tip velocity is measured by a vibrometer, the corresponding signal is integrated in the regulator circuit to obtain the displacement feedback, which is used to modify the input voltage of the actuator to reach a target location. The voltage regulator reduces the total voltage, and therefore the electrostatic force, once the beam approaches the fixed electrode so that the balance is maintained between the mechanical restoring force and the electrostatic force that enables the actuator to achieve the desired large stroke. A mathematical model is developed for the actuator based on the mode shapes of the cantilever beam using experimentally identified parameters that yields good accuracy in predicting both the open loop and the closed loop responses. The low-frequency actuator also yields superharmonic resonances that are observed here for the first time in electrostatic actuators. The actuator can also be configured either as a bi-stable actuator using a low-frequency controller or as a chaotic resonator using a high-frequency controller. The high-frequency controller yields large and bounded chaotic attractors for a wide range of excitation magnitudes and frequencies making it suitable for sensor applications. Bifurcation diagrams reveal periodic motions, softening behavior, period doubling cascades, one-well and two-well chaos, superharmonic resonances and a reverse period doubling cascade. To verify the observed chaotic oscillations, Lyapunov exponents are calculated and found to be positive. Furthermore, a chaotic resonator with a quadratic controller is designed that not only requires less voltage, but also produces more robust and larger motions. Another metric of chaos, information entropy, is used to verify the chaotic attractors in this case. It is found that the attractors have a common information entropy of 0.732 independent of the excitation amplitude and frequency.
242

Use of Instabilities in Electrostatic Micro-Electro-Mechanical Systems for Actuation and Sensing

Khater, Mahmoud Elsayed January 2011 (has links)
This thesis develops methods to exploit static and dynamic instabilities in electrostatic MEMS to develop new MEMS devices, namely dynamically actuated micro switches and binary micro gas sensors. Models are developed for the devices under consideration where the structures are treated as elastic continua. The electrostatic force is treated as a nonlinear function of displacement derived under the assumption of parallel-plate theorem. The Galerkin method is used to discretize the distributed-parameter models, thus reducing the governing partial differential equations into sets of nonlinear ordinary-differential equations. The shooting method is used to numerically solve those equations to obtain the frequency-response curves of those devices and the Floquet theory is used to investigate their stability. To develop the dynamically actuated micro switches, we investigate the response of microswitches to a combination of DC and AC excitations. We find that dynamically actuated micro switches can realize significant energy savings, up to 60 %, over comparable switches traditionally actuated by pure DC voltage. We devise two dynamic actuation methods: a fixed-frequency method and a shifted-frequency method. While the fixed-frequency method is simpler to implement, the shifted-frequency method can minimize the switching time to the same order as that realized using traditional DC actuation. We also introduce a parameter identification technique to estimate the switch geometrical and material properties, namely thickness, modulus of elasticity, and residual stress. We also develop a new detection technique for micro mass sensors that does not require any readout electronics. We use this method to develop static and dynamic binary mass sensors. The sensors are composed of a cantilever beam connected to a rigid plate at its free end and electrostatically coupled to an electrode underneath it. Two versions of micro mass sensors are presented: static binary mass sensor and dynamic binary mass sensor. Sensitivity analysis shows that the sensitivity of our static mass sensor represents an upper bound for the sensitivity of comparable statically detected inertial mass sensors. It also shows that the dynamic binary mass sensors is three orders of magnitude more sensitive than the static binary mass sensor. We equip our mass sensor with a polymer detector, doped Polyaniline, to realize a formaldehyde vapor sensor and demonstrate its functionality experimentally. We find that while the static binary gas sensor is simpler to realize than the dynamic binary gas sensor, it is more susceptible to external disturbances.
243

Novel Impedance Tuner, Phase Shifter, And Vector Modulators Using Rf Mems Technology

Unlu, Mehmet 01 March 2009 (has links) (PDF)
This thesis presents the theory, design, fabrication, and measurement results of novel reconfigurable impedance tuner, phase shifter, and vector modulators using the RF MEMS technology. The presented circuits are based on triple stub topology, and it is shown both theoretically and experimentally in this thesis that it is possible to control the insertion phase and amplitude of the input signal simultaneously using this topology. The presented circuits are implemented using an in-house, surface micromachining fabrication process developed at METU, namely METU RF MEMS Fabrication Process, which is implemented using six masks on quartz substrates. The RF MEMS impedance tuner is designed to operate in 6-20 GHz frequency band, and it covers the Smith Chart with 1331 impedance points. The measurement results of 729 impedance points of the fabricated impedance tuner show that a wide Smith Chart coverage is obtained in the entire band. The RF MEMS phase shifter is designed to cover 0-360 degrees range 10 degree steps at 15 GHz center frequency. The measurement results of the fabricated phase shifter show that the average phase error is 1.7 degrees, the average insertion loss is -3.1 dB, and the average return loss is -19.3 dB for the measured 21 phase states. The phase shifter can also work up to 30 GHz and 40 GHz with average insertion losses of -5 dB and -8 dB, respectively. The designed RF MEMS vector modulator operates in 22.5-27.5 GHz band, and it has 3 amplitude and 8 phase states. The measurement results of the fabricated vector modulator show that the amplitude error is 0.5 dB, the phase error is 4 degrees, and the return loss is -15 dB on average among the 24 measured states at each of 22.5, 25, and 27.5 GHz frequencies.
244

Quadrature Error Compensation And Its Effects On The Performance Of Fully Decoupled Mems Gyroscopes

Tatar, Erdinc 01 October 2010 (has links) (PDF)
This thesis, for the first time in the literature, presents the effect of quadrature error compensation on the performance of a fully decoupled MEMS gyroscope and provides experimental data on the sources of quadrature error. Dedicated quadrature error cancellation electrodes operating with only differential DC potentials are designed. Gyroscopes with intentionally placed imperfections are fabricated with SOG based SOI process which provides higher yield and uniformity compared to SOG process. Tests show that the fully closed loop system with quadrature cancellation operates as expected. Gyroscope performance is improved up to 7.8 times for bias instability, 10 times for angle random walk (ARW) and 800 times for output offset with quadrature cancellation. The actual improvement is higher since some sensors cannot be operated without quadrature cancellation and they are not included in improvement calculations. The best obtained performance is bias instability of 0.39
245

Particle simulation of MEMS,NEMS components and processes - theory, software design and applications

Kauzlarić, David January 2009 (has links)
Zugl.: Freiburg (Breisgau), Univ., Diss., 2009
246

A Large-Stroke Electrostatic Micro-Actuator

Towfighian, Shahrzad January 2010 (has links)
Parallel-plate electrostatic actuators driven by a voltage difference between two electrodes suffer from an operation range limited to 30% of the gap that has significantly restrained their applications in Microelectromechanical systems (MEMS). In this thesis, the travel range of an electrostatic actuator made of a micro-cantilever beam electrode above a fixed electrode is extended quasi-statically to 90% of the capacitor gap by introducing a voltage regulator (controller) circuit designed for low frequency actuation. The developed large-stroke actuator is valuable contribution to applications in optical filters, optical modulators, digital micro-mirrors and micro-probe based memory disk drives. To implement the low-frequency large-stroke actuator, the beam tip velocity is measured by a vibrometer, the corresponding signal is integrated in the regulator circuit to obtain the displacement feedback, which is used to modify the input voltage of the actuator to reach a target location. The voltage regulator reduces the total voltage, and therefore the electrostatic force, once the beam approaches the fixed electrode so that the balance is maintained between the mechanical restoring force and the electrostatic force that enables the actuator to achieve the desired large stroke. A mathematical model is developed for the actuator based on the mode shapes of the cantilever beam using experimentally identified parameters that yields good accuracy in predicting both the open loop and the closed loop responses. The low-frequency actuator also yields superharmonic resonances that are observed here for the first time in electrostatic actuators. The actuator can also be configured either as a bi-stable actuator using a low-frequency controller or as a chaotic resonator using a high-frequency controller. The high-frequency controller yields large and bounded chaotic attractors for a wide range of excitation magnitudes and frequencies making it suitable for sensor applications. Bifurcation diagrams reveal periodic motions, softening behavior, period doubling cascades, one-well and two-well chaos, superharmonic resonances and a reverse period doubling cascade. To verify the observed chaotic oscillations, Lyapunov exponents are calculated and found to be positive. Furthermore, a chaotic resonator with a quadratic controller is designed that not only requires less voltage, but also produces more robust and larger motions. Another metric of chaos, information entropy, is used to verify the chaotic attractors in this case. It is found that the attractors have a common information entropy of 0.732 independent of the excitation amplitude and frequency.
247

Use of Instabilities in Electrostatic Micro-Electro-Mechanical Systems for Actuation and Sensing

Khater, Mahmoud Elsayed January 2011 (has links)
This thesis develops methods to exploit static and dynamic instabilities in electrostatic MEMS to develop new MEMS devices, namely dynamically actuated micro switches and binary micro gas sensors. Models are developed for the devices under consideration where the structures are treated as elastic continua. The electrostatic force is treated as a nonlinear function of displacement derived under the assumption of parallel-plate theorem. The Galerkin method is used to discretize the distributed-parameter models, thus reducing the governing partial differential equations into sets of nonlinear ordinary-differential equations. The shooting method is used to numerically solve those equations to obtain the frequency-response curves of those devices and the Floquet theory is used to investigate their stability. To develop the dynamically actuated micro switches, we investigate the response of microswitches to a combination of DC and AC excitations. We find that dynamically actuated micro switches can realize significant energy savings, up to 60 %, over comparable switches traditionally actuated by pure DC voltage. We devise two dynamic actuation methods: a fixed-frequency method and a shifted-frequency method. While the fixed-frequency method is simpler to implement, the shifted-frequency method can minimize the switching time to the same order as that realized using traditional DC actuation. We also introduce a parameter identification technique to estimate the switch geometrical and material properties, namely thickness, modulus of elasticity, and residual stress. We also develop a new detection technique for micro mass sensors that does not require any readout electronics. We use this method to develop static and dynamic binary mass sensors. The sensors are composed of a cantilever beam connected to a rigid plate at its free end and electrostatically coupled to an electrode underneath it. Two versions of micro mass sensors are presented: static binary mass sensor and dynamic binary mass sensor. Sensitivity analysis shows that the sensitivity of our static mass sensor represents an upper bound for the sensitivity of comparable statically detected inertial mass sensors. It also shows that the dynamic binary mass sensors is three orders of magnitude more sensitive than the static binary mass sensor. We equip our mass sensor with a polymer detector, doped Polyaniline, to realize a formaldehyde vapor sensor and demonstrate its functionality experimentally. We find that while the static binary gas sensor is simpler to realize than the dynamic binary gas sensor, it is more susceptible to external disturbances.
248

Optische Kalibrierung von diffraktiven Mikrospiegelarrays

Berndt, Dirk 30 January 2014 (has links) (PDF)
Diffraktive Mikrospiegelarrays sind eine seit Jahren etablierte innovative Lösung zur ortsaufgelösten Beleuchtungsmodulation im UV-Spektralbereich. Sie werden hauptsächlich als Schlüsselbauelement in mikrolithografischen Industrieanlagen eingesetzt. Gegenwärtige Untersuchungen befassen sich mit der Erweiterung der Technologie hin zu multispektralen Anwendungen, beispielsweise in der Mikroskopie zur strukturierten Objektausleuchtung. Aufgrund des diffraktiven Arbeitsprinzips mit Phasenmodulationen im Nanometerbereich sowie der Vielzahl von Einzelspiegeln mit individuellem Auslenkverhalten stellt die präzise Ansteuerung der Bauelemente eine wesentliche Herausforderung dar. In diesem Kontext steht die Entwicklung und Validierung eines Verfahrens im Fokus dieser Arbeit, das die Gesamtheit von mehreren Tausend oder auch Millionen Mikrospiegeln abhängig von gewünschtem Beleuchtungsmuster und -wellenlänge auf korrekte Kippwinkel einstellen kann. Der gewählte Ansatz liegt in einem Mess- und Korrekturverfahren aller Einzelspiegelverkippungen. Die als Kalibrierung bezeichnete Methode nutzt ein Weißlichtinterferometer zur profilometrischen Charakterisierung der elektro-mechanischen Übertragungsfunktionen der Aktuatoren, wodurch erstmalig auf diesem Themengebiet der multispektrale Bauelementeinsatz gewährleistet werden kann. Zentrales Ergebnis der Kalibrierroutine ist eine Reduzierung der Streuung der Spiegelverkippungen um einen Faktor größer fünf. Direkte Folge sind erheblich verbesserte optische Projektionsmuster, aufgenommen an einem parallel entwickelten optischen Lasermessplatz mit spektral verschiedenen Quellen. Nachgewiesen wurden im Vergleich zum unkalibrierten Ausgangszustand Kontrastverdoppelungen, Homogenitätssteigerungen und die Sicherstellung der Abbildung von mindestens 64 Graustufen. Die Ergebnisse dokumentieren einerseits die Leistungsfähigkeit von diffraktiven Mikrospiegelarrays in multispektralen Umgebungen mit sehr guten Abbildungseigenschaften. Gleichzeitig konnte die wesentliche Grundlage für einen deutlich erweiterten Einsatz optischer Mikrosysteme im stark wachsenden Anwendungsbereich der diffraktiven Optik bzw. der Ultrapräzisionsoptik geschaffen werden.
249

MEMS à veine fluidique intégrée pour la caractérisation et la pesée d'échantillons liquides / MEMS with an embedded microchannel for characterization and weighing of fluidic samples

Hadji, Céline 04 November 2016 (has links)
Les systèmes MEMS et NEMS permettent, par résonance mécanique, des mesures de masse avec une sensibilité et une résolution propices à la caractérisation d'objets de taille micro- et nanométrique. Ces dispositifs, adaptés à une intégration dans des systèmes d'analyse miniatures plus complexes, sont d'intérêt pour la recherche biomédicale et la détection de particules. Toutefois la caractérisation en milieu liquide reste à ce jour délicate, principalement à cause de phénomènes dissipatifs associés à la mise en mouvement du fluide environnant le dispositif vibrant.Afin de lever ce verrou, l’équipe au sein de laquelle s’est déroulée cette thèse a développé des MEMS fluidiques sous forme de plaques minces mises en vibration dans leur plan de manière à limiter l'excitation du fluide environnant. Chaque plaque comporte un canal microfluidique permettant la circulation d'un liquide dont la masse moyenne est précisément déterminée par la fréquence de résonance du système. A terme, l'ambition de ces systèmes est de parvenir à révéler, par un décalage en fréquence, le passage au sein de la plaque vibrante d’une particule unique transportée par le liquide.Deux objectifs ont été atteints dans le cadre de cette thèse. D'une part, le comportement de ces structures en présence de divers liquides a été finement caractérisé ce qui a permis d’évaluer leurs performances réelles en fonction des conditions d'excitation. La résolution mesurée pour ces capteurs est de l’ordre de quelques g.L-1, pour une sensibilité d’environ 100 Hz.(g.L-1)-1.D'autre part, une nouvelle génération de capteurs aux caractéristiques innovantes a été conçue en vue d’abaisser le seuil de détection en diminuant la masse des résonateurs et en améliorant le bruit en fréquence.Ce manuscrit sera articulé autour de quatre chapitres. Le premier propose un état de l’art des techniques existantes pour la caractérisation de particules en fluide, et détaille ensuite les solutions MEMS et NEMS développées à cette fin dans la littérature. Le second chapitre livre les résultats issus de la caractérisation d’une première génération de MEMS fluidiques. Le troisième décrit les observations et mesures réalises, et propose des perspectives d’amélioration de ces composants ainsi que de leur protocole de caractérisation. Enfin, on présente dans le dernier chapitre une nouvelle génération de NEMS conçue et fabriquée au cours de cette thèse ; pour finir sont discutés les choix réalisés et les perspectives d’évolution attendues pour ces composants. / MEMS and NEMS allow sensitive and precise mass detection consistent with micro- and bio- objects analysis. These systems are promising for biomedical research and particle metrology, and can be easily integrated in miniaturized multifunctional systems. Thererfore, characterization in liquid media remains tricky due to viscous dissipation consequent to the movement induced in the fluidic environment.In order to overcome this technological lock, our laboratory previously designed and fabricated specific MEMS devices for fluidic analysis; these thin plate resonators with and embedded microchannel are actuated in liquid media, with four capacitive electrodes providing both actuation and detection. The circulating fluid mass can be precisely measured by monitoring the device’s resonant frequency. The long-term objective is to be able to detect and weigh one single particle transported by the fluid.Two main objectives were fulfilled during these three years. First, the MEMS behaviour in presence of various liquids was evaluated, providing a fine-grained analysis of their performances as mass sensors. The measured resolution of our sensors is about a few g.L-1 with a sensitivity of 100 Hz.(g.m-3)-1.Meanwhile, a new generation of NEMS sensors with innovative features was designed; the objective is to decrease the effective mass and reduce the frequency noise, both for a better mass resolution.This thesis includes four chapters. The first one consists in a review of the existing techniques for particles characterization in fluid as well as MEMS and NEMS solutions for particles metrology described in the litterature. The second part of the manuscript presents the results of the experimental characterizations carried out on the first generation of sensors. The third chapter gathers the conclusions of these measurements and gives an outlook on possible improvements on both the design and the characterization of the sensors. At last, the fourth part describes the new generation of devices and discusses their characteristics in terms of expected resolution and applications.
250

Déphaseurs en bande millimétrique basés sur des lignes à ondes lentes accordables en technologie MEMS dans un process post-CMOS / Millimeter-wave phase shifters based on tunable transmission lines in MEMS technology post-CMOS process

Nasserddine, Victoria 15 December 2016 (has links)
L’objectif de ces travaux de recherche est la conception en technologie intégrée d’une nouvelle topologie de ligne de transmission accordable afin de réaliser des déphaseurs en bande millimétrique. Cette topologie nommée TS-CPW (pour « Tunable Slow wave CoPlanar Waveguide ») utilise d’une part le phénomène d’ondes lentes qui permet de miniaturiser longitudinalement la ligne de transmission et offre un facteur de qualité plus élevé qu’en technologie microruban intégrée, et d’autre part une approche de type MEMS (Micro Electro Mechanical system) afin obtenir l’accordabilité de la ligne avec une figure de mérite élevée comparativement à une approche de type varactor. Dans un premier temps, la topologie et la conception d’une ligne TS-CPW basée sur des simulations électromagnétiques sont présentées en technologie BiCMOS. Dans un second temps, toujours sur la base de TS-CPWs, des déphaseurs présentant 3-bit de résolution, avec différentes valeurs de déphasage total (de 157.5° et 315°), ont été développés à une fréquence de fonctionnement égale à 60 GHz. Les TS-CPWs et les déphaseurs ont été réalisés avec la technologie BiCMOS 0.25 µm de l’institut IHP en Allemagne, puis mesurés à l’aide d’un analyseur de réseau à IHP et à l’IMEP-LaHc. / This work focuses on the design of millimeter-wave phase shifters based on a new topology of tunable transmission lines named Tunable Slow wave CoPlanar Waveguide (TS-CPW). TS-CPW uses, on one side, the slow wave phenomenon in order to miniaturize longitudinally the transmission line and to show a better quality factor than its integrated microstrip transmission line counterpart and, on the other side, the MEMS approach to achieve tunability of the transmission line with a good figure-of-merit. First, the topology, the design and the electromagnetic simulations of the TS-CPW based on MEMS (Micro Electro Mechanical system) are presented in a BiCMOS technology. Next, phase shifters with 3-bit of resolution based on TS-CPWs are developed at 60 GHz with two different values of total phase shift (157.5° and 315°). These TS-CPWs and phase shifters were fabricated in IHP’s 0.25 µm BiCMOS technology and measured on the vector network analyzers of IHP and IMEP-LaHC.

Page generated in 0.1957 seconds