401 |
Micro-electro-mechanical Resonator-Based Digital and Interface Elements for Low Power Circuitszou, xuecui 11 1900 (has links)
The interest in implementing energy-efficient digital circuits using micro and
nanoelectromechanical resonator technology has increased significantly over the last
decade given their lower energy consumption in comparison to complementary metal
oxide-semiconductor circuits. In this thesis, multiple circuit designs based on micro and
nanoelectromechanical beam resonators are presented. These circuits include a nano
resonator-based flash style analog-to-digital converter, a 4-bit digital-to-analog
converter, and a micro-resonator-based 7:3 counter, all among the key building blocks
of a microcomputing system. Simulations and experimental results were obtained for all
circuits. In general, the proposed circuits based on nanoelectromechanical resonators
show up to 90% reduction in energy consumption compared to their complementary
metal-oxide-semiconductor counterparts in MHz operation speeds, fulfilling
requirements for many applications such as Internet of Things and biomedical devices.
|
402 |
SU-8 Based MEMS Process with Two Metal Layers using α-Si as a Sacrificial MaterialRamadan, Khaled S. 04 1900 (has links)
Polymer based microelectromechanical systems (MEMS) micromachining is finding more interest in research and applications. This is due to its low cost and less time processing compared with silicon MEMS. SU-8 is a photo-patternable polymer that is used as a structural layer for MEMS and microfluidic devices. In addition to being processed with low cost, it is a biocompatible material with good mechanical properties. Also, amorphous silicon (α-Si) has found use as a sacrificial layer in silicon MEMS applications. α-Si can be deposited at large thicknesses for MEMS applications and also can be released in a dry method using XeF2 which can solve stiction problems related to MEMS applications. In this thesis, an SU-8 MEMS process is developed using amorphous silicon (α-Si) as a sacrificial layer. Electrostatic actuation and sensing is used in many MEMS applications. SU-8 is a dielectric material which limits its direct use in electrostatic actuation. This thesis provides a MEMS process with two conductive metal electrodes that can be used for out-of-plane electrostatic applications like MEMS switches and variable capacitors. The process provides the fabrication of dimples that can be conductive or non-conductive to facilitate more flexibility for MEMS designers. This SU-8 process can fabricate SU-8 MEMS structures of a single layer of two different thicknesses. Process parameters were tuned for two sets of thicknesses which are thin (5-10μm) and thick (130μm).
Chevron bent-beam structures and different suspended beams (cantilevers and bridges) were fabricated to characterize the SU-8 process through extracting the density, Young’s Modulus and the Coefficient of Thermal Expansion (CTE) of SU-8. Also, the process was tested and used as an educational tool through which different MEMS structures were fabricated including MEMS switches, variable capacitors and thermal actuators.
|
403 |
Rozbor a konstrukce optického laditelného vláknového útlumového článku pro telekomunikační aplikace / Analysis and construction of an optical fibre tunable attenuator for telecommunication applicationsProkop, Daniel January 2018 (has links)
This paper deals with the possibilities of designing the module for control of the attenuation of the optical signal. The paper describes basics of ber optic transmission and beam e ects. Variants of attenuation cells are characterized in this paper and based on the ndings a solution of the module for control of the attenuation of the optical signal is proposed. Practical section of the thesis deals with the design and physical construction of module for control of the attenuation of the optical signal using MEMS variable optical attenuator.
|
404 |
Topná MEMS platforma pro chemické senzory / MEMS microhotplate platform for chemical sensorsVančík, Silvester January 2018 (has links)
This master’s thesis deals with design and fabrication of MEMS microhotplate platform for chemical gas sensors. The theoretical part describes MEMS, sensors and processes and technologies needed for fabrication of micro hotplate. The practical part includes simulations, masks and step by step microhotplate fabrication. Fabricated heating membrane was characterized and compared to theoretical values from simulations and to similar devices presented in literature.
|
405 |
Nonlinear Mechanics of MEMS Rectangular Microplates under Electrostatic ActuationSaghir, Shahid 12 1900 (has links)
The first objective of the dissertation is to develop a suitable reduced order model capable of investigating the nonlinear mechanical behavior of von-Karman plates under electrostatic actuation. The second objective is to investigate the nonlinear static and dynamic behavior of rectangular microplates under small and large actuating forces.
In the first part, we present and compare various approaches to develop reduced order models for the nonlinear von-Karman rectangular microplates actuated by nonlinear electrostatic forces. The reduced-order models aim to investigate the static and dynamic behavior of the plate under small and large actuation forces. A fully clamped microplate is considered. Different types of basis functions are used in conjunction with the Galerkin method to discretize the governing equations. First we investigate the convergence with the number of modes retained in the model. Then for validation purpose, a comparison of the static results is made with the results calculated by a nonlinear finite element model. The linear eigenvalue problem for the plate under the electrostatic force is solved for a wide range of voltages up to pull-in.
In the second part, we present an investigation of the static and dynamic behavior of a fully clamped microplate. We investigate the effect of different non-dimensional design parameters on the static response. The forced-vibration response of the plate is then investigated when the plate is excited by a harmonic AC load superimposed to a DC load. The dynamic behavior is examined near the primary and secondary (superharmonic and subharmonic) resonances. The microplate shows a strong hardening behavior due to the cubic nonlinearity of midplane stretching. However, the behavior switches to softening as the DC load is increased. Next, near-square plates are studied to understand the effect of geometric imperfections of microplates.
In the final part of the dissertation, we investigate the mechanical behavior of initially curved microplates. Microplates often experience an initial curvature imperfection, due to the micro fabrication process, which affects significantly their mechanical behavior. In this case a clamped-free-clamped-free microplate is considered. We validate the reduced order model by comparing the calculated static behavior and the fundamental natural frequency with those computed by a finite element model. As case studies, we consider two commonly encountered profiles of the initial curvature imperfection and study their effects on both the static and dynamic responses of the microplates.
Next, an initially curved microplate made of silicon nitride is studied. The static behavior of the microplate is investigated when applying a DC voltage. Then, the dynamic behavior of the microplate is examined under the application of a harmonic AC voltage, superimposed to a DC voltage. Simulation results calculated by the reduced order model are compared with experimental data for model validation purpose, which show good agreement.
|
406 |
Polyimide and Metals MEMS Multi-User ProcessesCarreno, Armando Arpys Arevalo 11 1900 (has links)
The development of a polyimide and metals multi-user surface micro-machining
process for Micro-electro-mechanical Systems (MEMS) is presented. The process was
designed to be as general as possible, and designed to be capable to fabricate different
designs on a single silicon wafer. The process was not optimized with the purpose
of fabricating any one specific device but can be tweaked to satisfy individual needs
depending on the application.
The fabrication process uses Polyimide as the structural material and three separated
metallization layers that can be interconnected depending on the desired application.
The technology allows the development of out-of-plane compliant mechanisms,
which can be combined with six variations of different physical principles for
actuation and sensing on a single processed silicon wafer. These variations are: electrostatic motion, thermal bimorph actuation, capacitive sensing, magnetic sensing,
thermocouple-based sensing and radio frequency transmission and reception.
|
407 |
Dynamics of MEMS Resonators and their Exploitation for Sensing and ActuationIlyas, Saad 04 1900 (has links)
This dissertation presents theoretical and experimental investigations into the dynamical behavior of Micro electromechanical systems (MEMS) resonators and their exploitation for filtering, sensing, and logic applications. The dissertation is divided into two parts: MEMS coupled structures and MEMS dynamic logic devices.
First, a theoretical and experimental investigation is presented on both electrostatically and mechanically coupled resonator. Static and dynamic analysis is presented for weakly electrostatically coupled silicon microbeams and also for strongly mechanically coupled polyimide microbeams. The static analysis focuses on revealing pull-in characteristics, while the dynamic analysis focuses on the frequency response of the system and its exploitation for potential applications in filtering and amplification. Next, the phenomenon of mode localization is explored theoretically and experimentally on both electrostatically and mechanically weakly coupled resonators. Eigenvalue analysis is conducted and the dynamic response of the coupled system under different external perturbations is investigated. It is observed, that the exploitation of mode localization depends on the choice of the resonator to be under direct excitation, its stiffness to be perturbed, and which resonator is used to record the output results. These understandings will potentially help improve the performance of MEMS mode-localized sensors.
Finally, three techniques to realize cascadable MEMS logic devices are presented. MEMS logic device vibrates at two steady states; a high on-resonance state (1) and a low off-resonance state (0). First, a MEMS logic device is presented capable of performing the AND/NAND logic gate and a tri-state logic gate using mixed-frequency excitation. This work is based on the concept of activation (1) and deactivation (0) of combination resonances due to the mixing of two or more input signals. Second, exploitation of subharmonic resonance under an AC only excitation to perform AND logic operation is presented. Finally, another MEMS logic device is presented working on the principal of activation (1) and deactivation (0) of second resonant mode of a clamped-clamped microbeam. This device is capable of performing OR, XOR and NOT gate. Experimental demonstration of the cascadability is shown for this case cascading OR and NOT gate to perform a logically complete NOR logic gate.
|
408 |
Micro-Electro-Mechanical Systems (MEMS) Integrated Frequency Reconfigurable AntennaZohur, Abdul 01 May 2013 (has links)
In this paper, the design, analysis, and characterization of reconfigurable antennas based on radio frequency micro-electro-mechanical systems (RF MEMS) operating in the United States' public safety (PS) bands are presented. The design methodology of these antennas, which are different from the normal antenna design, is also reported. In this thesis, two electrically small reconfigurable antenna designs have been presented, with two and three modes of operation, and central frequencies of 718 and 4960 MHz and of 857,809 and 4960 MHz, respectively. The maximum frequency tunable ratio achieved in these designs is 7. The recongurability between the modes is achieved by one and three RF MEMS switches in all three designs. These switches enable a change in the length of the current flow path, thereby changing the resonance frequencies. The measurement results for impedance and radiation characteristics of the fabricated antennas prototypes are also presented, and agree reasonably well with the simulations results from An-soft HFSS.
|
409 |
Multiple IMU Sensor Fusion for SUAS Navigation and PhotogrammetryGivens, Matthew 01 August 2019 (has links)
Inertial measurement units (IMUs) are devices that sense accelerations and angular rates in 3D so that vehicles and other devices can estimate their orientations, positions, and velocities. While traditionally large, heavy, and costly, using mechanical gyroscopes and stabilized platforms, the recent development of micro-electromechanical sensor (MEMS) IMUs that are small, light, and inexpensive has led to their adoption in many everyday systems such as cell phones, video game controllers, and commercial drones. MEMS IMUs, despite their advantages, have major drawbacks when it comes to accuracy and reliability. The idea of using more than one of these sensors in an array, instead of using only one, and fusing their outputs to generate an improved solution is explored in this thesis.
|
410 |
Mechanical Behavior of Cu-Co MultilayersJanuary 2019 (has links)
abstract: With the advancements in technology, it is now possible to synthesize new materials with specific microstructures, and enhanced mechanical and physical properties. One of the new class of materials are nanoscale metallic multilayers, often referred to as nanolaminates. Nanolaminates are composed of alternating, nanometer-thick layers of multiple materials (typically metals or ceramics), and exhibit very high strength, wear resistance and radiation tolerance. This thesis is focused on the fabrication and mechanical characterization of nanolaminates composed of Copper and Cobalt, two metals which are nearly immiscible across the entire composition range. The synthesis of these Cu-Co nanolaminates is performed using sputtering, a well-known and technologically relevant physical vapor deposition process. X-ray diffraction is used to characterize the microstructure of the nanolaminates. Cu-Co nanolaminates with different layer thicknesses are tested using microelectromechanical systems (MEMS) based tensile testing devices fabricated using photolithography and etching processes. The stress-strain behavior of nanolaminates with varying layer thicknesses are analysed and correlated to their microstructure. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2019
|
Page generated in 0.0517 seconds