• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 525
  • 187
  • 122
  • 61
  • 44
  • 37
  • 24
  • 24
  • 23
  • 18
  • 13
  • 7
  • 6
  • 5
  • 3
  • Tagged with
  • 1328
  • 416
  • 246
  • 196
  • 166
  • 145
  • 144
  • 143
  • 120
  • 115
  • 97
  • 94
  • 73
  • 72
  • 70
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

Modeling and Control of a Magnetically Levitated Microrobotic System

Craig, David January 2006 (has links)
Magnetically levitated microrobotic systems have shown a great deal of promise for micromanipulation tasks. A new large-gap magnetic suspension system has recently been developed at the University of Waterloo in order to develop microrobotic systems for various applications. In order to achieve motion with the system, a model is needed in order to facilitate the design of various aspects of the system, such as the microrobot and the controller. In order to derive equations of motion for the system attempts were made to characterize the force produced by the magnetic drive unit in terms of a simple analytical equation. The force produced by the magnetic drive unit was estimated with the aid of a finite element model. The derived equations were able to predict the general trend of the force curves, and with sufficient parameter tweaking the error between the force estimated by the finite element model and the force estimated by the analytical equation could be minimized. System models describing the motion of the system in the horizontal and vertical directions are identified and compared to the actual system response. The vertical position response is identified through a least squares parameter estimate of the closed loop response combined with a partial reconstruction of the root locus diagram, with the model structure based on the known dynamics of a simplified form of magnetic levitation. This model was able to provide a reasonable prediction of the system response for a variety of PID controllers under a variety of input conditions. The horizontal models are identified using a least-squares parameter estimate of the open loop characteristics of the system. The horizontal models are able to provide a reasonable prediction of the system response under PD and PID control. Full spatial motion of a microrobot prototype is demonstrated over a working range of 20x22x30 mm<sup>3</sup>, with PID controller parameters and reference trajectories adjusted to minimize disturbances. The RMS error at steady state is on the order of 0. 020 mm for vertical positioning and 0. 008 mm for horizontal positioning. A linear quadratic regulator implemented for vertical position control was able to reduce the vertical position RMS error to 0. 014 mm.
372

High Q Tunable Filters

Huang, Fengxi 06 November 2014 (has links)
Microwave tunable filters are key components in radar, satellite, wireless, and various dynamic communication systems. Compared to a traditional filter, a tunable filter is able to dynamically pass the required signal and suppress the interference from adjacent channels. In reconfigurable systems, tunable filters are able to adapt to dynamic frequency selection and spectrum access. They can also adapt to bandwidth variations to maximize data transmission, and can minimize interferences from or to other users. Tunable filters can be also used to reduce size and cost in multi-band receivers replacing filter banks. However, the tunable filter often suffers limited application due to its relatively low Q, noticeable return loss degradation, and bandwidth changing during the filter tuning. The research objectives of this thesis are to investigate the feasibility of designing high Q tunable filters based on dielectric resonators (DR) and coaxial resonators. Various structures and tuning methods that yield relatively high unloaded Q tunable filters are explored and developed. Furthermore, the method of designing high Q tunable filters with a constant bandwidth and less degradation during the tuning process has been also investigated. A series of novel structures of dielectric resonators have been proposed to realize in a high Q miniature tunable filters. The first type of TME mode DR filter is designed to be tuned by piezoelectric bending actuators outside the cavity, and has achieved a tuning range from 4.97 to 5.22 GHz and unloaded Q better than 536 over the tuning range. The second type of TME mode tunable filters are integrated with various tuning elements: GaAs varactors, MEMS switches, and MEMS capacitor banks are employed. The designed filter with MEMS switches operates at 4.72 GHz, and has achieved a tuning ratio of 3.5% with Q better than 510 over the tuning range. The designed filter with GaAs varactors operates at 4.92 GHz, and has achieved a tuning ratio of 2% with Q better than 170 over the tuning range. Finally, the designed filter with MEMS capacitor bank operates at 5.11 GHz, delivering a tuning ratio of 3.5% with Q better than 530 over the tuning range. Cavity combline/coaxial resonators are also used in the design of high Q tunable filters. This thesis presents a novel approach to design a tunable cavity combline filter tuned by a MEMS switched capacitor bank. Instead of mechanically moving the tuning disk, the cavity combline filter is tuned with capacitances loading on the tuning disks, which are electrically adjusted by MEMS switched capacitor bank. The assembled 2-pole filter operates at 2.5 GHz with a bandwidth of 22 MHz, a tuning range of 110 MHz and a Q better than 374 over the tuning range. The assembled 6-pole filter operates at 2.6 GHz with a bandwidth of 30 MHz and has a tuning range of 44 MHz. Finally, the design of high Q tunable filter with constant bandwidth is explored. A 4-pole high Q cavity combline tunable filter with constant bandwidth is demonstrated. The tuning has been realized manually and by using a piezoelectric motor respectively. The designed filter operates at 2.45 GHz and has achieved a stable bandwidth of 30 ??1.1 MHz over a tuning range of 400 MHz and an unloaded Q better than 3000. This design method for a constant bandwidth filter is applicable to both cavity combline filters and dielectric resonator filters.
373

CMOS-MEMS Probe Arrays for Tip-Based Nanofabrication

Zhang, Yang 01 August 2014 (has links)
Scanning probe microscopy (SPM) tip-based nanofabrication (TBN) is a technique that directly creates a variety of nanostructures on a substrate using the nanoscale probe tips. SPM TBN possesses superior resolution and flexibility: nanostructures with feature size under 5 nm have been achieved via SPM TBN, which is beyond what the state-of-the art optical-based lithography technique can provide. However, the inherent serial nature of SPM TBN makes it a low throughput process. Multi-probe SPM systems have therefore been developed to increase the nanofabrication efficiency. Atomic force microscopy (AFM) and scanning tunneling microscopy (STM) are two most commonly used SPM TBN techniques. Most of prior work has focused on contact-mode AFM-based TBN. This work, using CMOS MEMS technology as the design and fabrication platform, develops an active conductive probe array that aims to perform parallel surface imaging and nanofabrication in non-contact STM mode. The CMOS-MEMS process provides a monolithic integration of MEMS devices with CMOS electronics that can facilitate future automation and parallel probe operation. The CMOS-MEMS probe adopts a micro-cantilever structure and applies bimorph electrothermal actuation to control the vertical displacement of the probe tips. The cantilever is designed to be stiff, with a spring constant of 36 N/m that is larger than the force gradient of the cantilever tip-sample interaction forces in the working distance regime of STM in order to avoid the tip-to-sample “snap-in” and ensure the stability of the STM feedback system. A modified Spindt tip process, compatible with post-CMOS MEMS processing, is developed to batch fabricate Ni/Pt composite tips on CMOS-MEMS probe arrays that are used as STM end-effectors. The integrated Ni/Pt tips on the MEMS probes have a tip radius down to 50 vii nm. The Spindt tip demonstrates the capability of both imaging and nanowire fabrication in STM mode. A hierarchical dual-servo STM system is constructed for the parallel STM imaging using two CMOS-MEMS probes. The system consists of a piezoelectric actuator-driven servo and an electrothermal actuator-driven servo to control the vertical displacement of two probe tips and maintain a constant current between the tips and the sample. Both servos use a proportionalintegral controller. The dual-servo STM system is capable of parallel STM image acquisition using CMOS MEMS probe arrays. An on-chip electrothermal proximity sensor pair and probes with embedded microgoniometers are designed to assist the alignment between the CMOS-MEMS probe array and the examined sample surface. The electrothermal proximity sensor pair is used to measure the separation and the non-parallelism between the probe chip and the sample. The electrothermal proximity sensor has a positioning accuracy of around 1 μm. An electrothermal microgoniometer platform is developed to hold a one-dimensional array of active CMOS-MEMS probes and serves to provide the in situ fine adjustment of relative height among these probes. The micro-goniometer has a maximum tilt of 1.2°, which is sufficient to compensate the probe chip-sample misalignment and the possible height difference among array probes introduced by process variations.
374

The Application of MEMS Microphone Arrays to Aeroacoustic Measurements

Bale, Adam Edward January 2011 (has links)
Aeroacoustic emissions were identified as a primary concern in the public acceptance of wind turbines. A review of literature involving sound localization was undertaken and led to the design of two microphone arrays to identify acoustic sources. A small-scale array composed of 27 sensors was produced with the intention of improving the quality of sound measurements over those made by a single microphone in a small, closed-loop wind tunnel. A large-scale array containing 30 microphones was also implemented to allow for measurements of aeroacoustic emissions from airfoils and rotating wind turbines. To minimize cost and pursue alternative sensor technologies, microelectromechanical microphones were selected for the array sensors and assembled into the arrays on printed circuit boards. Characterization of the microphones was completed using a combination of calibration techniques, primarily in a plane wave tube. Array response to known sources was quantified by analyzing source maps with respect to source location accuracy, beamwidth, and root mean square error. Multiple sources and rotating sources were tested to assess array performance. Following validation with known sources, wind tunnel testing of a 600 watt wind turbine was performed at freestream speeds of 2.5 m/s, 3.5 m/s, 4.5 m/s, and to 5.5 m/s. Significant aeroacoustic emissions were noted from the turbine in the 4.5 m/s and 5.5 m/s cases, with an increase of up to 12 dB over background levels. Source maps from the 5.5 m/s tests revealed that the primary location of aeroacoustic emissions was near the outer radii of the rotor, but not at the tip, and generally moved radially outward with increasing frequency. The azimuthal location of the greatest sound pressure levels was typically found to be between 120º and 130º measured counterclockwise from the upward vertical, coinciding with the predicted location of greatest emissions provided by an analytical model based on dipole directivity and convective amplification. Analysis of the acoustic spectra, turbine operating characteristics, and previous literature suggested that the sound emissions emanated from the trailing edge of the blades.
375

Automated Micromanipulation of Micro Objects

Shahini, Mohsen January 2011 (has links)
In recent years, research efforts in the development of Micro Electro Mechanical Systems, (MEMS) including microactuators and micromanipulators, have attracted a great deal of attention. The development of microfabrication techniques has resulted in substantial progress in the miniaturization of devices such as electronic circuits. However, the research in MEMS still lags behind in terms of the development of reliable tools for post-fabrication processes and the precise and dexterous manipulation of individual micro size objects. Current micromanipulation mechanisms are prone to high costs, a large footprint, and poor dexterity and are labour intensive. To overcome such, the research in this thesis is focused on the utilization of microactuators in micromanipulation. Microactuators are compliant structures. They undergo substantial deflection during micromanipulation due to the considerable surface micro forces. Their dominance in governing micromanipulation is so compelling that their effects should be considered in designing microactuators and microsensors. In this thesis, the characterization of the surface micro forces and automated micromanipulation are investigated. An inexpensive experimental setup is proposed as a platform to replace Atomic Force Microscopy (AFM) for analyzing the force characterization of micro scale components. The relationship between the magnitudes of the surface micro forces and the parameters such as the velocity of the pushing process, relative humidity, temperature, hydrophilicity of the substrate, and surface area are empirically examined. In addition, a precision automated micromanipulation system is realized. A class of artificial neural networks (NN) is devised to estimate the unmodelled micro forces during the controlled pushing of micro size object along a desired path. Then, a nonlinear controller is developed for the controlled pushing of the micro objects to guarantee the stability of the closed loop system in the Lyapunov sense. To validate the performance of the proposed controller, an experimental setup is designed. The application of the proposed controller is extended to precisely push several micro objects, each with different characteristics in terms of the surface micro forces governing the manipulation process. The proposed adaptive controller is capable of learning to adjust its weights effectively when the surface micro forces change under varying conditions. By using the controller, a fully automated sequential positioning of three micro objects on a flat substrate is performed. The results are compared with those of the identical sequential pushing by using a conventional linear controller. The results suggest that artificial NNs are a promising tool for the design of adaptive controllers to accurately perform the automated manipulation of multiple objects in the microscopic scale for microassembly.
376

Tunable Filters and RF MEMS Variable Capacitors with Closed Loop Control

Zahirovic, Nino January 2011 (has links)
Multi-band and multi-mode radios are becoming prevalent and necessary in order to provide optimal data rates across a network with a diverse and spotty landscape of coverage areas (3G, HSPA, LTE, etc.). As the number of required bands and modes increases, the aggregate cost of discrete RF signal chains justi es the adoption of tunable solutions. Tunable fi lters are one of the pieces crucial to signal chain amalgamation. The main requirements for a tunable fi lter are high unloaded quality factor, wide tuning range, high tuning speed, high linearity, and small size. MEMS technology is the most promising in terms of tuning range, quality factor, linearity and size. In addition, a fi lter that maintains a constant passband bandwidth as the center frequency is tuned is preferred since the analog baseband processing circuitry tends to be tailored for a particular signal bandwidth. In this work, a novel design technique for tunable fi lters with controlled and predictable bandwidth variation is presented. The design technique is presented alongside an analysis and modeling method for predicting the final filter response during design optimization. The method is based on the well known coupling matrix model. In order to demonstrate the design and modeling technique, a novel coupling structure for stripline fi lters is presented that results in substantial improvements in coupling bandwidth variation over an octave tuning range when compared to combline and interdigitated coupled line fi lters. In order for a coupled resonator filter to produce an equal ripple Chebyshev response, each resonator of the fi lter must be tuned to precisely the same resonant frequency. Production tuned fi lters are routinely tuned in the lab and production environments by skilled technicians in order to compensate for manufacturing tolerances. However, integrated tunable filters cannot be tuned by traditional means since they are integrated into systems on circuit boards or inside front end modules. A fixed tuning table for all manufactured modules is inadequate since the required tuning accuracy exceeds the tolerance of the tuning elements. In this work, we develop tuning techniques for the automatic in-circuit tuning of tunable filters using scalar transmission measurement. The scalar transmission based techniques obviate the use of directional couplers. Techniques based on both swept and single frequency scalar transmission measurement are developed. The swept frequency technique, based on the Hilbert transform derived relative groupdelay, tunes both couplings and resonant frequencies while the single frequency technique only tunes the center frequency. High performance filters necessitate high resonator quality factors. Although fi lters are traditionally treated as passive devices, tunable fi lters need to be treated as active devices. Tuning elements invariably introduce non-linearities that limit the useful power handling of the tunable fi lter. RF MEMS devices have been a topic of intense research for many years for their promising characteristics of high quality factor and high power handling. Control and reliability issues have resulted in a shift from continuously tunable devices to discretely switched devices. However, fi lter tuning applications require fine resolution and therefore many bits for digital capacitor banks. An analog/digital hybrid tuning approach would enable the tuning range of a switched capacitor bank to be combined with the tuning resolution of an analog tunable capacitor. In this work, a device-level position control mechanism is proposed for piezoresistive feedback of device capacitance over the device's tuning range. It is shown that piezoresistve position control is ef ective at improving capacitance uncertainty in a CMOS integrated RF MEMS variable capacitor.
377

An Adjustable Impedance Matching Network Using Rf Mems Technology

Unlu, Mehmet 01 January 2003 (has links) (PDF)
This thesis presents design, modeling, and fabrication of an RF MEMS adjustable impedance matching network. The device employs the basic triple stub matching technique for impedance matching. It has three adjustable length stubs which are implemented using capacitively loaded coplanar waveguides. The capacitive loading of the stubs are realized using the MEMS switches which are evenly distributed over the stubs. There are 40 MEMS bridges on each stub whichare separated with &amp / #955 / /40 spacing making a total of 120 MEMS switches in the structure. The variability of the stub length is accomplished by closing the MEMS switch nearest to the required stub length, and making a virtual short circuit to ground. The device is theoretically capable of doing matching to every point on the Smith chart. The device is built on coplanar waveguide transmission lines. It has a center operating frequency of 10GHz, but because of its adjustability property it is expected to work in 1-40GHz range. It has dimensions of 8950 &times / 5720&micro / m2. This work is the continuation of the first national work on fabrication of RF MEMS devices. The device in this work is fabricated using the surface micromachining technology in the microelectronic facilities of Middle East Technical University.
378

Surface Micromachined Capacitive Accelerometers Using Mems Technology

Yazicioglu, Refet Firat 01 January 2003 (has links) (PDF)
Micromachined accelerometers have found large attention in recent years due to their low-cost and small size. There are extensive studies with different approaches to implement accelerometers with increased performance for a number of military and industrial applications, such as guidance control of missiles, active suspension control in automobiles, and various consumer electronics devices. This thesis reports the development of various capacitive micromachined accelerometers and various integrated CMOS readout circuits that can be hybrid-connected to accelerometers to implement low-cost accelerometer systems. Various micromachined accelerometer prototypes are designed and optimized with the finite element (FEM) simulation program, COVENTORWARE, considering a simple 3-mask surface micromachining process, where electroplated nickel is used as the structural layer. There are 8 different accelerometer prototypes with a total of 65 different structures that are fabricated and tested. These accelerometer structures occupy areas ranging from 0.2 mm2 to 0.9 mm2 and provide sensitivities in the range of 1-69 fF/g. Various capacitive readout circuits for micromachined accelerometers are designed and fabricated using the AMS 0.8 &micro / m n-well CMOS process, including a single-ended and a fully-differential switched-capacitor readout circuits that can operate in both open-loop and close-loop. Using the same process, a buffer circuit with 2.26fF input capacitance is also implemented to be used with micromachined gyroscopes. A single-ended readout circuit is hybrid connected to a fabricated accelerometer to implement an open-loop accelerometer system, which occupies an area less than 1 cm2 and weighs less than 5 gr. The system operation is verified with various tests, which show that the system has a voltage sensitivity of 15.7 mV/g, a nonlinearity of 0.29 %, a noise floor of 487 Hz &micro / g , and a bias instability of 13.9 mg, while dissipating less than 20 mW power from a 5 V supply. The system presented in this research is the first accelerometer system developed in Turkey, and this research is a part of the study to implement a national inertial measurement unit composed of low-cost micromachined accelerometers and gyroscopes.
379

STM downmixing readout of nanomechanical motion

Kan, Meng 11 1900 (has links)
The scanning tunneling microscope (STM) based on quantum tunneling can attain atomic-scale spatial resolution and help elucidate a wealth of phenomena in the microscopic world. However a limitation in scanning tunneling microscopy is the low temporal resolution due to readout circuit frequency rolloff at a few kHz. This limitation can be overcome by using downmixing directly in the tunneling junction. With this technology we measure the high frequency vibrational modes (~ 1 MHz) of MEMS doubly-clamped beams and explore the implication of STM downmixing for nanomechanics.
380

2D-Sensorik für das Monitoring statischer und dynamischer Wandschubspannungsfelder

Buder, Ulrich January 2009 (has links)
Zugl.: Berlin, Techn. Univ., Diss.

Page generated in 0.0297 seconds