• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Generation of Dielectrophoretic Force under Uniform Electric Field

Kua, C.H., Yang, C., Goh, S., Isabel, R., Youcef-Toumi, Kamal, Lam, Yee Cheong 01 1900 (has links)
Effective dipole moment method has been widely accepted as the de facto technique in predicting the dielectrophoretic force due to the non-uniform electric field. In this method, a finite-particle is modeled as an equivalent point-dipole that would induce a same electric field under the external electric field. This approach is only valid when the particle size is significantly smaller than the characteristic length of interest. This assumption is often violated in a microfluidic device, where the thickness or width of the microchannel can be as small as the particle. It is shown in this numerical study that when the dimensions of the particle were in the same order of magnitude as the characteristic length of the device, dielectrophoretic force can be induced even in a uniform electric field. This force arises due to the disturbance of the particle and the bounding wall. / Singapore-MIT Alliance (SMA)
2

Modeling and Estimation of the Volume of Interaction of an Electrostatic Force Microscope Probe with a Dielectric Sample

Anema, Everet 30 March 2012 (has links)
This thesis seeks to characterize the size of the interaction volume in a sample subject to electric force microscope (EFM) probing. It discusses the historical relevance of the EFM and the experimental method used. It then discusses the modeling of the fields surrounding the grating sample with the equivalent charge model (ECM) where a tip or other rotationally symmetric conducting element is replaced by a series of point charges on the vertical axis that mimic the original fields. The results of the model were then compared to the experimental data as well as a model simulated using COMSOL, a finite element analysis package. The electrostatic model was found to have good agreement with the simulated and experimental results and was then used to estimate the volume of interaction and the lateral resolution of this technique. The volume of interaction was estimated at 6000 μm3 and the lateral resolution was estimated at 10 μm.
3

Modeling and Estimation of the Volume of Interaction of an Electrostatic Force Microscope Probe with a Dielectric Sample

Anema, Everet 30 March 2012 (has links)
This thesis seeks to characterize the size of the interaction volume in a sample subject to electric force microscope (EFM) probing. It discusses the historical relevance of the EFM and the experimental method used. It then discusses the modeling of the fields surrounding the grating sample with the equivalent charge model (ECM) where a tip or other rotationally symmetric conducting element is replaced by a series of point charges on the vertical axis that mimic the original fields. The results of the model were then compared to the experimental data as well as a model simulated using COMSOL, a finite element analysis package. The electrostatic model was found to have good agreement with the simulated and experimental results and was then used to estimate the volume of interaction and the lateral resolution of this technique. The volume of interaction was estimated at 6000 μm3 and the lateral resolution was estimated at 10 μm.
4

Electrostatic Latch Mechanism for Handling Projection on Arrayed Vertical Motion System

Takagi, S., Sasaki, H., Shikida, M., Sato, K. January 2007 (has links)
No description available.
5

Manufacture and Performance Evaluation of SU-8-based Non-spherical Lensed Fibers Fabricated Using Electrostatic Pulling Method

Wu, Chun-Ching 19 July 2008 (has links)
This paper proposed a low-cost and high-throughput method to fabricate lensed optical fibers. SU-8 Photoresist is used as the material for fabricating the proposed lens structure and is directly applied on two kinds of optical fiber tip, single mode glass fibers (O.D.=125 £gm) and plastic graded-index plastic fiber (O.D.=500 £gm), utilizing surface tension force to form a hemi-circular shape lens structure. The hemi-circular shape SU-8 lens is then electrostatically pulled to form non-spherical shape in an uniform electric field at a temperature higher than the glass temperature (Tg) of SU-8. Microlens with various radius of curvature can be easily produced by tuning the applied electric fields during the electrostatic pulling process. In addition, this study also measures the UV-Vis-NIR spectrum SU-8 photoresist to confirm the optical property of SU-8. Results indicate the SU-8 has high optical transmittance from the wavelength range of 380-1600 nm. SEM observation also indicates the fabricated SU-8 microlens has excellent surface smoothness which is essential for optical applications. A commercial optical simulation software of ZEMAX® is used to predict the light path of the fabricated lensed fiber. The numerical results show good agreement with the experimental test obtained by projecting laser light into a diluted fluorescence solution. Furthermore, a Fabry-Perot laser chip with the wavelength of 1310 nm is used for light coupling test for the fabricated lensed fibers. Results show the coupling efficiency is up to 78% at working distance of 90 £gm while using the plastic lensed fiber (R =48 £gm), which is around 2 fold higher than that of a flat-end fiber. The coupling efficiency of glass lensed fiber (R =23 £gm) is up to 72% at working distance of 24 £gm, which is around 2.3 fold higher than that of a flat-end fiber. The proposed method is feasible of producing high-quality lensed optical fiber in a high throughput and low-cost way. The method proposed in the current study may give substantial impacts on fabricating lensed fiber in the future.
6

Nonlinear Mechanics of MEMS Rectangular Microplates under Electrostatic Actuation

Saghir, Shahid 12 1900 (has links)
The first objective of the dissertation is to develop a suitable reduced order model capable of investigating the nonlinear mechanical behavior of von-Karman plates under electrostatic actuation. The second objective is to investigate the nonlinear static and dynamic behavior of rectangular microplates under small and large actuating forces. In the first part, we present and compare various approaches to develop reduced order models for the nonlinear von-Karman rectangular microplates actuated by nonlinear electrostatic forces. The reduced-order models aim to investigate the static and dynamic behavior of the plate under small and large actuation forces. A fully clamped microplate is considered. Different types of basis functions are used in conjunction with the Galerkin method to discretize the governing equations. First we investigate the convergence with the number of modes retained in the model. Then for validation purpose, a comparison of the static results is made with the results calculated by a nonlinear finite element model. The linear eigenvalue problem for the plate under the electrostatic force is solved for a wide range of voltages up to pull-in. In the second part, we present an investigation of the static and dynamic behavior of a fully clamped microplate. We investigate the effect of different non-dimensional design parameters on the static response. The forced-vibration response of the plate is then investigated when the plate is excited by a harmonic AC load superimposed to a DC load. The dynamic behavior is examined near the primary and secondary (superharmonic and subharmonic) resonances. The microplate shows a strong hardening behavior due to the cubic nonlinearity of midplane stretching. However, the behavior switches to softening as the DC load is increased. Next, near-square plates are studied to understand the effect of geometric imperfections of microplates. In the final part of the dissertation, we investigate the mechanical behavior of initially curved microplates. Microplates often experience an initial curvature imperfection, due to the micro fabrication process, which affects significantly their mechanical behavior. In this case a clamped-free-clamped-free microplate is considered. We validate the reduced order model by comparing the calculated static behavior and the fundamental natural frequency with those computed by a finite element model. As case studies, we consider two commonly encountered profiles of the initial curvature imperfection and study their effects on both the static and dynamic responses of the microplates. Next, an initially curved microplate made of silicon nitride is studied. The static behavior of the microplate is investigated when applying a DC voltage. Then, the dynamic behavior of the microplate is examined under the application of a harmonic AC voltage, superimposed to a DC voltage. Simulation results calculated by the reduced order model are compared with experimental data for model validation purpose, which show good agreement.
7

Propriedades elétricas e modelagem da barreira de potencial do sistema varistor à base de SnO2-TiO2

Marques, Vicente de Paulo Borges [UNESP] 14 April 2005 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:35:05Z (GMT). No. of bitstreams: 0 Previous issue date: 2005-04-14Bitstream added on 2014-06-13T20:06:19Z : No. of bitstreams: 1 marques_vpb_dr_araiq.pdf: 6875606 bytes, checksum: 6e3a2c49ede6d05f9db32af09bf934fc (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Estudos preliminares foram realizados em cerâmicas com propriedades varistoras, à base, SnO2-TiO2-Co2O3, com adições de Nb2O5, Ta2O5, Cr2O3 e Al2O3, preparados por meio de misturas de óxidos em moinho de alta energia, sinterizados em forno tubular na temperatura de 1250ºC durante 90 min em atmosfera de oxigênio, argônio e ambiente. Foram caracterizados quanto à densidade e propriedades elétricas.Terminada essa etapa, o sistema escolhido foi aquele que melhor se adaptou ao propósito do estudo desse trabalho. O sistema escolhido, SnO2-0,75TiO2-0,1Co2O3-0,05Nb2O5 mol %, foi preparado nas mesmas condições que na fase preliminar, sinterizados em atmosfera ambiente, tratados termicamente a 900ºC durante 60 min em atmosfera de oxigênio, e a pressão reduzida (10- 2torr). Em seqüência, essas amostras foram caracterizadas quanto as suas propriedades elétricas (medida tensão-corrente, espectroscopia de impedância e microscopia de força eletrostática) e microestruturais (difração de raios x, microscopia eletrônica de varredura, analise de EDX, analise de EDS, microscopia eletrônica de transmissão e espectroscopia de fotoelétrons induzida por raios x). A medida da altura da barreira foi obtida por meio da técnica de microscopia de força eletrostática através de uma modelagem matemática. / In the present thesis it was studied nonohmic electronic ceramics based on SnO2.TiO2.Co2O3 ternary systems doped with Nb2O5, Ta2O5, Cr2O3 and Al2O3. These systems were prepared using traditional ball milling oxide mixture process. The sintering was conducted using tubular furnace at 1250 ºC for 90 min in different atmospheres: oxygen, argon and ambient atmosphere. Structural, density and electrical properties were investigated in all of the systems. The system presenting superior electrical properties was chosen to be studied concerning relationship between microstructural features and electrical properties. Therefore, SnO2-0.75TiO2-0.1Co2O3-0.05Nb2O5 % mol composition was thermal treated at 900 ºC for 60 min at oxygen-rich and oxygen-poor (10-2torr) atmospheres. After this step, the system was characterized by using different electrical, structural and microstructural techniques (current-voltage, impedance spectroscopy and electronic force image, X-ray diffraction, scanning electronic microscopy (SEM) and energy dispersive x-ray (EDX), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The potential barrier was mathematical modeled according to electrostatic force images. The mathematical treatment is based on a matrix systems applied to each potential difference existing in the sample. From the solution of the matrix system it is possible to obtain the barrier height as a function of the applied potential.
8

Switching mechanisms, electrical characterisation and fabrication of nanoparticle based non-volatile polymer memory devices

Prime, Dominic Charles January 2010 (has links)
Polymer and organic electronic memory devices offer the potential for cheap, simple memories that could compete across the whole spectrum of digital memories, from low cost, low performance applications, up to universal memories capable of replacing all current market leading technologies, such as hard disc drives, random access memories and Flash memories. Polymer memory devices (PMDs) are simple, two terminal metal-insulator-metal (MIM) bistable devices that can exist in two distinct conductivity states, with each state being induced by applying different voltages across the device terminals. Currently there are many unknowns and much ambiguity concerning the working mechanisms behind many of these PMDs, which is impeding their development. This research explores some of these many unanswered questions and presents new experimental data concerning their operation. One prevalent theory for the conductivity change is based on charging and charge trapping of nanoparticles and other species contained in the PMD. The work in this research experimentally shows that gold nanoparticle charging is possible in these devices and in certain cases offers an explanation of the working mechanism. However, experimental evidence presented in this research, shows that in many reported devices the switching mechanism is more likely to be related to electrode effects, or a breakdown mechanism in the polymer layer. Gold nanoparticle charging via electrostatic force microscopy (EFM) was demonstrated, using a novel device structure involving depositing gold nanoparticles between lateral electrodes. This allowed the gold nanoparticles themselves to be imaged, rather than the nanoparticle loaded insulating films, which have previously been investigated. This method offers the advantages of being able to see the charging effects of nanoparticles without any influence from the insulating matrix and also allows charging voltages to be applied via the electrodes, permitting EFM images to capture the charging information in near real-time. Device characteristics of gold nanoparticle based PMDs are presented, and assessed for use under different scenarios. Configurations of memory devices based on metal-insulator-semiconductor (MIS) structures have also been demonstrated. Simple interface circuitry is presented which is capable of performing read, write and erase functions to multiple memory cells on a substrate. Electrical properties of polystyrene thin films in the nanometre thickness range are reported for the first time, with insulator trapped charges found to be present in comparable levels to those in silicon dioxide insulating films. The dielectric breakdown strength of the films was found to be significantly higher than bulk material testing would suggest, with a maximum dielectric strength of 4.7 MV•cm-1 found, compared with the manufacturers bulk value of 0.2 – 0.8 MV•cm-1. Conduction mechanisms in polystyrene were investigated with the dominant conduction mechanism found to be Schottky emission.
9

Propriedades elétricas e modelagem da barreira de potencial do sistema varistor à base de SnO2-TiO2 /

Marques, Vicente de Paulo Borges January 2005 (has links)
Orientador: Mario Cilense / Banca: Carlos de Oliveira Paiva Santos / Banca: Paulo Roberto Bueno / Banca: Edson Roberto Leite / Banca: Dulcina Maria Pinatti Ferreira de Souza / Resumo: Estudos preliminares foram realizados em cerâmicas com propriedades varistoras, à base, SnO2-TiO2-Co2O3, com adições de Nb2O5, Ta2O5, Cr2O3 e Al2O3, preparados por meio de misturas de óxidos em moinho de alta energia, sinterizados em forno tubular na temperatura de 1250ºC durante 90 min em atmosfera de oxigênio, argônio e ambiente. Foram caracterizados quanto à densidade e propriedades elétricas.Terminada essa etapa, o sistema escolhido foi aquele que melhor se adaptou ao propósito do estudo desse trabalho. O sistema escolhido, SnO2-0,75TiO2-0,1Co2O3-0,05Nb2O5 mol %, foi preparado nas mesmas condições que na fase preliminar, sinterizados em atmosfera ambiente, tratados termicamente a 900ºC durante 60 min em atmosfera de oxigênio, e a pressão reduzida (10- 2torr). Em seqüência, essas amostras foram caracterizadas quanto as suas propriedades elétricas (medida tensão-corrente, espectroscopia de impedância e microscopia de força eletrostática) e microestruturais (difração de raios x, microscopia eletrônica de varredura, analise de EDX, analise de EDS, microscopia eletrônica de transmissão e espectroscopia de fotoelétrons induzida por raios x). A medida da altura da barreira foi obtida por meio da técnica de microscopia de força eletrostática através de uma modelagem matemática. / Abstract: In the present thesis it was studied nonohmic electronic ceramics based on SnO2.TiO2.Co2O3 ternary systems doped with Nb2O5, Ta2O5, Cr2O3 and Al2O3. These systems were prepared using traditional ball milling oxide mixture process. The sintering was conducted using tubular furnace at 1250 ºC for 90 min in different atmospheres: oxygen, argon and ambient atmosphere. Structural, density and electrical properties were investigated in all of the systems. The system presenting superior electrical properties was chosen to be studied concerning relationship between microstructural features and electrical properties. Therefore, SnO2-0.75TiO2-0.1Co2O3-0.05Nb2O5 % mol composition was thermal treated at 900 ºC for 60 min at oxygen-rich and oxygen-poor (10-2torr) atmospheres. After this step, the system was characterized by using different electrical, structural and microstructural techniques (current-voltage, impedance spectroscopy and electronic force image, X-ray diffraction, scanning electronic microscopy (SEM) and energy dispersive x-ray (EDX), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The potential barrier was mathematical modeled according to electrostatic force images. The mathematical treatment is based on a matrix systems applied to each potential difference existing in the sample. From the solution of the matrix system it is possible to obtain the barrier height as a function of the applied potential. / Doutor
10

Non-conventional insulators : metal-insulator transition and topological protection / Isolant non-conventionnel : transition métal-isolant et protection topologique

Mottaghizadeh, Alireza 06 October 2014 (has links)
Ce manuscrit présente une étude expérimentale de phase isolante non-conventionnelle, l'isolant d'Anderson, induit par le désordre, l'isolant de Mott, induit par les interactions de Coulomb, et les isolants topologiques.Dans une première partie du manuscrit, je décrirais le développement d'une méthode pour étudier la réponse de charge de nanoparticules par Microscopie à Force Electrostatique (EFM). Cette méthode a été appliquée à des nanoparticules de magnétite (Fe3O4), un matériau qui présente une transition métal-isolant, i.e. la transition de Verwey, lors de son refroidissement en dessous d'une température TV~120 K.Dans une seconde partie, ce manuscrit présente une étude détaillée de l'évolution de la densité d'états au travers de la transition métal-isolant entre un isolant de type Anderson-Mott et une phase métallique dans le matériau SrTiO3, et ceci, en fonction de la concentration de dopants, les lacunes d'oxygènes. Nous avons trouvé que dans un dispositif memoresistif de type Au-SrTiO3-Au, la concentration de dopants pouvait être ajustée par migration des lacunes d'oxygènes à l'aide d'un champ. Dans cette jonction tunnel, l'évolution de la densités d'états au travers de la transition métal-isolant peut être étudiée de façon continue. Finalement, dans une troisième partie, le manuscrit présente le développement d'une méthode pour la microfabrication d'anneaux de Aharonov-Bohm avec l'isolant topologique, Bi2Se3, déposée par épitaxie à jet moléculaire. Des résultats préliminaires sur les propriétés de transport quantique de ces dispositifs seront présentés. / This manuscript presents an experimental study of unconventional insulating phases, which are the Anderson insulator, induced by disorder, the Mott insulator, induced by Coulomb interactions, and topological insulators.In a first part of the manuscript, I will describe the development of a method to study the charge response of nanoparticles through Electrostatic Force Microscopy (EFM). This method has been applied to magnetite Fe3O4 nanoparticles, a material that presents a metal-insulator transition, i.e. the Verwey transition, upon cooling the system below a temperature Tv=120K. In a second part, this manuscript presents a detailed study of the evolution of the Density Of States (DOS) across the metal-insulator transition between an Anderson-Mott insulator and a metallic phase in the material SrTiO3 and this, as function of dopant concentration, i.e. oxygen vacancies. We found that in this memristive type device Au-SrTiO3-Au, the dopant concentration could be fine-tuned through electric-field migration of oxygen vacancies. In this tunnel junction device, the evolution of the DOS can be followed continuously across the metal-insulator transition. Finally, in a third part, the manuscript presents the development of a method for the microfabrication of Aharonov-Bohm rings with the topological insulator material, Bi2Se3, grown by molecular beam epitaxy. Preliminary results on the quantum transport properties of these devices will be presented.

Page generated in 0.0857 seconds