• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Functional Study of the Major Histocompatibility Class I Antigen Presentation Pathway in Rainbow Trout (Oncorhynchus mykiss)

Sever, Lital January 2014 (has links)
Major Histocompatibility Complex (MHC) class I receptors are glycoproteins which play a critical role in anti-viral immunity by displaying foreign peptides to cytotoxic T cell lymphocytes. The loading of high affinity peptides into the MHC class I receptor in mammals is coordinated by a multiple proteins that are collectively referred to as the peptide loading complex (PLC). To date, the composition of the peptide loading complex in fish is unknown and therefore the characterization of the molecules which may exist in this putative complex was pursued. This thesis includes the cloning and functional characterization of ERp57 and calnexin in rainbow trout which, in mammals, are known to interact with the MHC class I receptor either during its early biogenesis or later in the assembly of the PLC. Trout ERp57 and calnexin cDNA sequences are ubiquitously expressed in trout tissues and both the ERp57 and calnexin genes appear in at least two copies each in the trout genome. Interestingly, despite their high sequence identity with their mammalian homologues, some structural discrepancies were identified. ERp57 does not contain an endoplasmic reticulum (ER) retention signal or a nuclear localization signal, while one of the two isolated cDNA clones for calnexin does not contain an ER (endoplasmic reticulum) retention signal and lacks a conserved C-terminal serine phosphorylation site. These findings suggest that in trout, there may be unique versions of these proteins that have acquired different cellular functions. Through the production of polyclonal antibodies against trout ERp57, the conserved protein induction of ERp57 during ER stress was demonstrated concurrently with calnexin. In addition, this study shows for the first time that ERp57 can be induced transcriptionally by phytohemagglutinin and synthetic double stranded RNA, which implies its possible regulatory role during viral infection and the activation of the immune response. Furthermore, the functional characterization of the MHC class I specific chaperone tapasin, a key element in the PLC of mammals was pursued. Tissue and cell line distribution revealed that tapasin is expressed in high levels in immune system organs and in the rainbow trout macrophage cell line RTS11, at a relative molecular weight of 48 kDa with an additional 20 kDa band detected by the tapasin antibody. Tapasin protein was significantly up regulated upon exposure to synthetic double stranded RNA and during infection with two fish viruses: chum salmon virus and viral hemorrhagic septicemia virus genotype IVa, whereas the expression of the 20 kDa band was not affected by these stimuli. This study also examined the regulation of the MH class I heavy chain,β2 microglobulin and their associated machinery upon exposure to viral hemorrhagic septicemia virus genotype IVa at permissive and non-permissive temperatures. β2 microglobulin secretion into the cell media, a marker of MH class I receptor turnover, was detected in the conditioned media of RTS11 cells under normal conditions and was shown to be significantly enhanced during viral hemorrhagic septicemia virus genotype IVa infection. Furthermore, when RTS11 cells were maintained at cold temperatures, the secretion of β2 microglobulin was significantly reduced in both infected and non-infected cultures, while the cellular levels of β2 microglobulin remained unchanged. These results suggest that cold temperature can alter the expression of the MH class I molecule on the cell surface and therefore may be contributing to host susceptibility to viral hemorrhagic septicemia virus genotype IVa during the winter. Lastly, Co-immunoprecipitation demonstrated the interaction of the lectin chaperones: calnexin and calreticulin with the glycosylated MH class I receptor supporting their conserved role during MH class I receptor folding in fish. Concurrently, tapasin's interaction with transporter associated with antigen processing (TAP) and with the glycosylated form of the MH class I was revealed for the first time in fish, which supports their role in antigen presentation as in mammals. This study demonstrated that ERp57 and tapasin form a conserved disulfide linked heterodimer of 110 kDa, however unlike mammals, an additional 75 kDa heterodimer was detected which suggests a possible novel interaction of ERp57 with a 20 kDa tapasin version alternately regulating antigen presentation in fish. Overall, this study suggest that the interactions involved in antigen presentation in mammals are conserved in fish, however the presence of different protein versions of calnexin, ERp57 and tapasin might dictate a different mode of regulation for MH class I assembly in fish, as opposed to mammals. Elucidating these interactions during various viral infections in fish can help to uncover possible viral strategies to manipulate the host immune response and will provide information needed to assist in designing novel tools to prevent fish viral diseases.
2

Human Papillomavirus 16 E7 Inhibits the ability of IFN-γ in Enhancement of MHC Class I Antigen Presentation and CTL Lysis by Affecting IRF-1 Expression in Keratinocytes

Fang Zhou Unknown Date (has links)
The results of experiments aimed at determining whether cytotoxic T lymphocytes (CTLs) can kill keratinocytes (KCs) expressing endogenously loaded antigen indicated that antigen specific cytotoxic T lymphocytes could recognize and kill keratinocytes expressing ovalbumin (OVA) or SIINFEKL peptide. Exposure of the KCs to interferon-gamma (IFN-γ) enhanced this CTL-mediated KC lysis and increased CTL epitope presentation on the surface of target cells. Expression of HPV 16 E7 protein in KCs affected CTL-mediated lysis. Expression of HPV 16 E7 inhibited IFN-γ-mediated up-regulation of SIINFEKL/H-2Kb complexes on keratinocytes, and also inhibited IFN-γ-mediated up-regulation of IRF-1 expression, and consequent up-regulation of TAP1 transcription. Further, overexpression of IRF-1 partially corrected the HPV 16 E7-mediated inhibition of enhanced susceptibility of KC lysis induced by IFN-γ. Thus, the effects of HPV 16 E7 on CTL-mediated lysis of IFN-γ exposed KCs are likely mediated by inhibition of MHC class I antigen presentation by IFN-γ. These findings may help explain why HPV-infected epithelial cells can escape from immune surveillance mediated by CTLs in vivo and in vitro.
3

The impact of [beta] 5i-deficiency on structure and function of 20S proteasomes in Listeria monocytogenes infection

Joeris, Thorsten 26 March 2009 (has links)
Das Proteasomsystem ist die Hauptquelle von Peptiden für die MHC Klasse I Antigen-Präsentation. In Vertebraten kann dieses durch die Expression verschiedener Subtypen des 20S Proteasoms moduliert werden. Die häufigsten Subtypen sind konstitutive Proteasomen (c20S) mit den katalytischen Untereinheiten beta1, beta2 und beta5 und Immunoproteasomen (i20S) mit den Immunountereinheiten beta1i, beta2i und beta5i. Die Expression von i20S optimiert in der Regel die MHC Klasse I Antigen-Präsentation, indem die Bildung von Peptiden mit hoher Affinität zu MHC I Molekülen verstärkt wird. Die Bildung von i20S wird momentan durch ein Modell der kooperativen Assemblierung erklärt, das auf der präferentiellen Interaktion zwischen den Immunountereinheiten beruht. In dieser Arbeit wurde die Assemblierung von 20S Proteasomen in beta5i defizienten Mäusen nach Infektion mit Listeria monocytogenes analysiert. In diesem Modell konnte keine präferentielle Interaktion zwischen den Untereinheiten festgestellt werden. Stattdessen zeigen die Ergebnisse, daß die Integration von konstitutiven oder Immunountereinheiten durch direkte Kompetition reguliert wird. Des Weiteren wurde während der Infektion eine beta5i-abhängige Zunahme der zellulären Proteasommenge festgestellt und somit ein neuer Mechanismus zur Regulation des zellulären Proteasomgehaltes entdeckt. Funktionell führt die beta5i-Defizienz zu einer verringerten MHC I Expression auf antigenpräsentierenden Zellen und zu einer verminderten Prozessierung des bakteriellen Antigens LLO296-304. Bei der Analyse der LLO296-304 spezifischen CD8 T Zell Antwort konnte jedoch kein Unterschied zwischen Wildtyp- und beta5i defizienten Mäusen festgestellt werden .Die Kontrolle der Infektion in den beta5i defizienten Mäusen ist jedoch in der Leber verzögert. Dies deutet darauf hin, dass die Erkennung und Elimination infizierter Zellen durch cytotoxische CD8 T Zellen auf Grund der geringeren MHC Klasse I Präsentation bakterieller Antigene behindert wird. / The proteasome-system is the main source of peptides for MHC class I antigen presentation. In vertebrates this system can be modulated by the expression of different subtypes of the 20S proteasome. The most common subtypes are constitutive proteasomes (c20S) with the catalytic subunits beta1, beta2 and beta5 and immunoproteasomes (i20S) with the immunosubunits beta1i, beta2i and beta5i. Expression of i20S generally optimizes MHC class I antigen presentation by increasing the generation of peptides with high affinity to MHC class I molecules. Currently, the formation of i20S is explained by a model of cooperative proteasome assembly, which is based on preferential interactions among the immunosubunits. Here, the assembly of 20S proteasomes was analysed in beta5i deficient mice during an ongoing infection with Listeria monocytogenes. In this model, no preferential interactions among constitutive subunits or immunosubunits could be determined. Instead, the results show that the integration of constitutive subunits or immunosubunits is regulated by direct competition. Further, a beta5i-dependent increase in cellular proteasome quantity was observed following infection. This reveals a novel mechanism for the regulation of cellular proteasome quantity, which is based on the differential expression of beta5i. Functionally, the deficiency in beta5i results in a reduced MHC class I cell surface expression on professional antigen presenting cells and a drastically diminished processing of the bacterial antigen LLO296-304. However, the analyses of LLO296-304 specific CD8 T cells did not reveal differences in the frequencies of these T cells between wild-type and beta5i deficient mice. Still, the control of infection in the liver of beta5i deficient mice was delayed. This phenotype suggests that the recognition and elimination of infected target cells by cytotoxic CD8 T cells is constrained due to the lowered MHC class I presentation of bacterial antigens.

Page generated in 0.2066 seconds