• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • Tagged with
  • 8
  • 8
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

To cleave or not to cleave - das Schnittverhalten des 20S-Proteasoms von der in vitro Analyse zur in silico Modellierung /

Tenzer, Stefan, January 2004 (has links)
Tübingen, Univ., Diss., 2004.
2

Der Einfluss von Aminopeptidasen auf die Antigenprozessierung

Schatz, Mark, January 2005 (has links)
Tübingen, Univ., Diss., 2005.
3

Membrantopologie und funktionale Charakterisierung der Transmembrandomänen des Transportkomplexes TAP

Schrodt, Susanne. Unknown Date (has links)
Universiẗat, Diss., 2005--Frankfurt (Main). / Zsfassung in dt. und engl. Sprache.
4

Induktion von Immunantworten durch Immunisierung mit Fusionsproteinen aus Sequenzen der Invarianten Kette und des Hühnereiweilysozyms

Schneiders, Angelika Maria. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--Bonn.
5

Multi-peptide-based vaccines for personalized cancer therapy analytical fundamentals translated into clinical applications /

Weinschenk, Toni, January 2004 (has links)
Tübingen, Univ., Diss., 2004.
6

To cleave or not to cleave das Schnittverhalten des 20S-Proteasoms ; von der In-vitro-Analyse zur In-silico-Modellierung /

Tenzer, Stefan. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Tübingen.
7

Modeling the MHC-I pathway

Peters, Björn 21 July 2003 (has links)
Das Immunsystems muss gesunde Zellen von infizierten und Krebszellen unterscheiden können, um letztere selektiv zu bekämpfen. Dies ist die Aufgabe der CTL-Zellen, die dazu auf der Zelloberfläche präsentierte Peptide die aus intrazellulären Proteinen der jeweiligen Zelle stammen untersuchen. Diese präsentierten Peptide (Epitope) werden durch den MHC-I Antigenpräsentationsweg hergestellt. Das Ziel dieser Arbeit ist es Methoden zu entwickeln die Epitope aus der großen Zahl prinzipiell in Proteinen enthaltener Peptide heraussuchen können. Dazu wird die Selektivität dreier wichtiger Komponenten des Präsentationsweges untersucht: Die Herstellung der Peptide durch das Proteasom, der Transport in das ER durch TAP, und das Binden von Peptiden an leere MHC-I Moleküle. Zur sequenzbasierten Vorhersage der Bindung von Peptiden an MHC-I Moleküle wurde ein neuer Algorithmus entwickelt. Dieser kombiniert eine Matrix, welche die individuellen Beiträge einzelner Reste zur Bindung beschreibt, mit Paarkoeffizienten, die Wechselwirkungen zwischen verschiedenen Positionen im Peptid beschreiben. Dieser Ansatz macht bessere Vorhersagen als bisher publizierte Methoden, und quantifiziert erstmals den Einfluss von Wechselwirkungen innerhalb eines Peptids auf die Bindung. Die Verteilung der Werte der Paarkoeffizienten zeigt, dass sich Wechselwirkungen nicht auf benachbarte Aminosäuren beschränken. Im Vergleich zu den Matrixeinträgen sind die Werte der Paarkoeffizienten klein, was erklärt warum Vorhersagen die Wechselwirkungen komplett vernachlässigen trotzdem gut sein können. Erstmals wurde ein Algorithmus zur Vorhersage der TAP-Transportseffizienz von Peptiden beliebiger Länge entwickelt. Das ist deshalb wichtig, da viele MHC-I Epitope als N-terminal verlängerte Prekursoren in das ER transportiert werden. Für die Vorhersage der Transportfähigkeit eines potentiellen Epitopes wird deshalb über die Transporteffiziens des Epitopes selbst und seiner Prekursoren gemittelt. Mit Hilfe dieser Definition von Transportfähigkeit wird gezeigt, dass TAP einen starken selektiven Einfluss auf die Auswahl von MHC-I Epitopen hat. Indem man Peptide die als 'nicht-transportierbar' vorhergesagt werden als mögliche Epitope ausschließt, kann man die ohnehin schon hohe Qualität von MHC-I Bindungsvorhersagen weiter steigern. So eine zweistufige Vorhersage scheitert, wenn man statt des TAP Transports die Vorhersage der Generierbarkeit eines Epitopes durch das Proteasom als Filter verwenden möchte. Dieses schlechte Abschneiden der proteasomalen Schnittvorhersagen wird auf eine mangelhafte experimentelle Datenbasis zurückgeführt, da proteasomale Schnittraten schwieriger zu messen und interpretieren sind als die Affinitätsdaten für TAP und MHC-I. Um die experimentelle Datenbasis in Zukunft verbessern zu können, wurde ein neues experimentelles Protokoll entwickelt und an einer Reihe von Experimenten getestet. Dabei werden zwei Probleme behandelt: (1) Durch die Verwendung von Massenbilanzen werden MS-Signale in quantifizierte Peptidmengen umgerechnet. (2) Durch das erste kinetische Modell des Proteasomes das die Entstehung und den Abbau von Peptiden während eines Verdaus zufrieden stellend beschreiben kann, können aus den Verdaudaten Schnittraten bestimmt werden. / A major task of the immune system is to identify cells that have been infected by a virus or that have mutated, and discriminate them from healthy cells. This duty is assigned to cytotoxic T-lymphocytes (CTL), which scan epitopes presented to them on cell surfaces derived from intracellular proteins through the MHC-I antigen processing pathway. The goal of this work is to provide computational methods that allow to predict which epitopes get presented from the large pool of peptide candidates contained in intracellular proteins. This is achieved by examining the selective influence of three major steps in the pathway: peptide generation by the proteasome, peptide transport into the ER by TAP, and binding of peptides to MHC-I molecules. For peptide binding to MHC-I, a new algorithm is developed that combines a matrix-based method describing the contribution of individual residues to binding with pair coefficients describing pair-wise interactions between positions in a peptide. This approach outperforms several previously published prediction methods, and for the first time quantifies the impact of interactions in a peptide. The distribution of the pair coefficient values shows that interactions are not limited to amino acids in direct contact, but can also play a role over longer distances. Compared to the matrix entries, the pair-coefficients are rather small, explaining why methods completely ignoring interactions can nevertheless make good predictions. Next, a novel algorithm is developed to predict the TAP affinities of peptides of any length. Longer peptides are important because several MHC-I epitopes are generated by N-terminal trimming of precursor peptides transported into the ER by TAP. As the true in vivo precursors of an epitope are not known, a generalized TAP score is established which averages across the scores of all precursors up to a certain length. The ability of this TAP score to discriminate between epitopes and random peptides shows that the influence of TAP is a consistent, strong pressure on the selection of MHC-I epitopes. Using predicted TAP transport efficiencies as a filter prior to the prediction of MHC-I binding affinities, it is possible to further improve the already very high classification accuracy achieved using MHC-I affinity predictions alone. Such a 2-step prediction protocol failed when predictions of C-terminal proteasomal cleavages were combined with MHC-I affinity predictions. This disappointing result is thought to be caused by the lack of a sufficiently large set of quantitative and consistent experimental data on proteasomal cleavage rates, which are more difficult to measure and interpret than the affinity assays used to characterize peptide binding to TAP and MHC-I. Therefore, a new protocol for the evaluation of proteasomal digests is developed, which is applied to a series of experiments. This novel protocol addresses two problems: (1) Using mass-balance equations, a method is developed to quantify peptide amounts from MS-signals. (2) By introducing the first kinetic model of the 20S proteasome capable of providing a satisfactory quantitative description of the whole time course of product formation, cleavage probabilities can be extracted reliably from proteasomal in vitro digests.
8

The impact of [beta] 5i-deficiency on structure and function of 20S proteasomes in Listeria monocytogenes infection

Joeris, Thorsten 26 March 2009 (has links)
Das Proteasomsystem ist die Hauptquelle von Peptiden für die MHC Klasse I Antigen-Präsentation. In Vertebraten kann dieses durch die Expression verschiedener Subtypen des 20S Proteasoms moduliert werden. Die häufigsten Subtypen sind konstitutive Proteasomen (c20S) mit den katalytischen Untereinheiten beta1, beta2 und beta5 und Immunoproteasomen (i20S) mit den Immunountereinheiten beta1i, beta2i und beta5i. Die Expression von i20S optimiert in der Regel die MHC Klasse I Antigen-Präsentation, indem die Bildung von Peptiden mit hoher Affinität zu MHC I Molekülen verstärkt wird. Die Bildung von i20S wird momentan durch ein Modell der kooperativen Assemblierung erklärt, das auf der präferentiellen Interaktion zwischen den Immunountereinheiten beruht. In dieser Arbeit wurde die Assemblierung von 20S Proteasomen in beta5i defizienten Mäusen nach Infektion mit Listeria monocytogenes analysiert. In diesem Modell konnte keine präferentielle Interaktion zwischen den Untereinheiten festgestellt werden. Stattdessen zeigen die Ergebnisse, daß die Integration von konstitutiven oder Immunountereinheiten durch direkte Kompetition reguliert wird. Des Weiteren wurde während der Infektion eine beta5i-abhängige Zunahme der zellulären Proteasommenge festgestellt und somit ein neuer Mechanismus zur Regulation des zellulären Proteasomgehaltes entdeckt. Funktionell führt die beta5i-Defizienz zu einer verringerten MHC I Expression auf antigenpräsentierenden Zellen und zu einer verminderten Prozessierung des bakteriellen Antigens LLO296-304. Bei der Analyse der LLO296-304 spezifischen CD8 T Zell Antwort konnte jedoch kein Unterschied zwischen Wildtyp- und beta5i defizienten Mäusen festgestellt werden .Die Kontrolle der Infektion in den beta5i defizienten Mäusen ist jedoch in der Leber verzögert. Dies deutet darauf hin, dass die Erkennung und Elimination infizierter Zellen durch cytotoxische CD8 T Zellen auf Grund der geringeren MHC Klasse I Präsentation bakterieller Antigene behindert wird. / The proteasome-system is the main source of peptides for MHC class I antigen presentation. In vertebrates this system can be modulated by the expression of different subtypes of the 20S proteasome. The most common subtypes are constitutive proteasomes (c20S) with the catalytic subunits beta1, beta2 and beta5 and immunoproteasomes (i20S) with the immunosubunits beta1i, beta2i and beta5i. Expression of i20S generally optimizes MHC class I antigen presentation by increasing the generation of peptides with high affinity to MHC class I molecules. Currently, the formation of i20S is explained by a model of cooperative proteasome assembly, which is based on preferential interactions among the immunosubunits. Here, the assembly of 20S proteasomes was analysed in beta5i deficient mice during an ongoing infection with Listeria monocytogenes. In this model, no preferential interactions among constitutive subunits or immunosubunits could be determined. Instead, the results show that the integration of constitutive subunits or immunosubunits is regulated by direct competition. Further, a beta5i-dependent increase in cellular proteasome quantity was observed following infection. This reveals a novel mechanism for the regulation of cellular proteasome quantity, which is based on the differential expression of beta5i. Functionally, the deficiency in beta5i results in a reduced MHC class I cell surface expression on professional antigen presenting cells and a drastically diminished processing of the bacterial antigen LLO296-304. However, the analyses of LLO296-304 specific CD8 T cells did not reveal differences in the frequencies of these T cells between wild-type and beta5i deficient mice. Still, the control of infection in the liver of beta5i deficient mice was delayed. This phenotype suggests that the recognition and elimination of infected target cells by cytotoxic CD8 T cells is constrained due to the lowered MHC class I presentation of bacterial antigens.

Page generated in 0.0549 seconds