• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

FORECASTING WITH MIXED FREQUENCY DATA:MIDAS VERSUS STATE SPACE DYNAMIC FACTOR MODEL : AN APPLICATION TO FORECASTING SWEDISH GDP GROWTH

Chen, Yu January 2013 (has links)
Most macroeconomic activity series such as Swedish GDP growth are collected quarterly while an important proportion of time series are recorded at a higher frequency. Thus, policy and business decision makers are often confront with the problems of forecasting and assessing current business and economy state via incomplete statistical data due to publication lags. In this paper, we survey a few general methods and examine different models for mixed frequency issues. We mainly compare mixed data sampling regression (MIDAS) and state space dynamic factor model (SS-DFM) by the comparison experiments forecasting Swedish GDP growth with various economic indicators. We find that single-indicator MIDAS is a wise choice when the explanatory variable is coincident with the target series; that an AR term enables MIDAS more promising since it considers autoregressive behaviour of the target series and makes the dynamic construction more flexible; that SS-DFM and M-MIDAS are the most outstanding models and M-MIDAS dominates undoubtedly at short horizons up to 6 months, whereas SS-DFM is more reliable at long predictive horizons. And finally we conclude that there is no perfect winner because each model can dominate in a special situation.
2

MIDAS Predicting Volatility at Different Frequencies

Shi, Wensi January 2010 (has links)
I compared various MIDAS (mixed data sampling) regression models to predict volatility from one week to one month with different regressors based on the records of Chinese Shanghai composite index. The main regressors are in 2 types, one is the realized power (involving 5-min absolute returns), the other is the quadratic variation, computed by squared returns. And realized power performs best at all the forecast horizons. I also compare the effect of lag numbers in regression, form 1 to 200, and it doesn’t change much after 50. In 3 week and month predict horizons, the fitness result with different lag numbers has a waving type among all the regressors, that implies there exists a seasonal effect which is the same as predict horizons in the lagged variables. At last,the out-of -sample and in-sample result of RV and RAV are quite similar, but in sometimes, out-of sample performs better.
3

Ensaios em econometria aplicada a finanças e macroeconomia utilizando a abordagem de regressão MIDAS

Santos, Douglas Gomes dos January 2014 (has links)
A abordagem de regressão MIDAS (Mixed Data Sampling), proposta por Ghysels et al. (2004), permite relacionar diretamente variáveis em freqüências distintas. Esta característica é particularmente atraente quando se deseja utilizar os dados nas freqüências em que são disponibilizados, bem como quando o objetivo é calcular previsões multi-períodos à frente. Nesta tese, utiliza-se a abordagem de regressão MIDAS em três ensaios em que são realizadas aplicações empíricas nas áreas de finanças e macroeconomia. Os três ensaios são de caráter comparativo. Com aplicações em diferentes contextos de previsão, objetiva-se contribuir fornecendo evidências empíricas comparativas. No primeiro ensaio, são explorados resultados comparativos no contexto de previsão de volatilidade multi-períodos. Compara-se a abordagem MIDAS com dois métodos amplamente utilizados no cálculo de previsões multi-períodos à frente: as abordagens direta e iterada. Seus desempenhos relativos são investigados em um estudo de Monte Carlo e em um estudo empírico em que são computadas previsões de volatilidade para horizontes de até 60 dias à frente. Os resultados do estudo de Monte Carlo indicam que a abordagem MIDAS fornece as melhores previsões para os horizontes iguais ou superiores a 15 dias. Em contraste, as previsões geradas a partir da abordagem iterada são superiores nos horizontes de 5 e 10 dias à frente. No estudo empírico, utilizando-se retornos diários dos índices S&P 500 e NASDAQ, os resultados não são tão conclusivos, mas sugerem um melhor desempenho para a abordagem iterada. Todas as análises são fora da amostra. No segundo ensaio, são comparados diversos modelos de previsão de volatilidade multi-períodos, especificamente das famílias MIDAS e HAR. As comparações são realizadas em termos da acurácia das previsões de volatilidade fora da amostra. No segundo ensaio, são comparados diversos modelos de previsão de volatilidade multi-períodos, especificamente das famílias MIDAS e HAR. As comparações são realizadas em termos da acurácia das previsões de volatilidade fora da amostra. Combinações das previsões dos referidos modelos também são consideradas. São utilizados retornos intradiários do IBOVESPA no cálculo de medidas de volatilidade, tais como variância realizada, variação potente realizada e variação bipotente realizada, sendo estas medidas usadas como regressores em ambos os modelos. Adicionalmente, utiliza-se um procedimento não paramétrico na estimação das medidas de variabilidade dos componentes contínuo e de saltos do processo de variação quadrática. Estas medidas são utilizadas como regressores separados em especificações MIDAS e HAR. Quanto às evidências empíricas, os resultados em termos de erro quadrático médio sugerem que regressores baseados em medidas de volatilidade robustas a saltos (i.e., variação bipotente realizada e variação potente realizada) são melhores em prever volatilidade futura. Entretanto, observa-se que, em geral, as previsões baseadas nestes regressores não são estatisticamente diferentes daquelas baseadas na variância realizada (o regressor benchmark). Além disso, observa-se que, de modo geral, o desempenho relativo das três abordagens de previsão (i.e., MIDAS, HAR e combinação de previsões) é estatisticamente equivalente. No terceiro ensaio, busca-se comparar os modelos MS-MIDAS (Markov-Switching MIDAS) e STMIDAS (Smooth Transition MIDAS) em termos de acurácia preditiva. Para tanto, realiza-se um exercício de previsão em tempo real em que são geradas previsões fora da amostra para o crescimento do PIB trimestral dos Estados Unidos com o uso de indicadores financeiros mensais. Neste exercício, também são considerados modelos lineares MIDAS e outros modelos de previsão (lineares e não-lineares) que incluem informação dos indicadores (via agregação temporal das observações mensais) para fins comparativos de desempenho preditivo. A partir dos resultados do estudo empírico, observa-se que, de modo geral, os modelos MS-MIDAS fornecem previsões mais acuradas que os modelos STMIDAS. / The Mixed Data Sampling (MIDAS) regression approach, proposed by Ghysels et al. (2004), allows us to directly relate variables at different frequencies. This characteristic is particularly attractive when one wishes to use the data at their original sampling frequencies, as well as when the objective is to calculate multi-period-ahead forecasts. In this thesis, we use the MIDAS regression approach in three papers in which we perform empirical applications in the areas of finance and macroeconomics. All papers are comparative studies. With applications in different forecasting contexts, we aim at contributing with empirical comparative evidence. In the first paper, we explore comparative results in the context of multi-period volatility forecasting. We compare the MIDAS approach with two widely used methods of producing multi-period forecasts: the direct and the iterated approaches. Their relative performances are investigated in a Monte Carlo study and in an empirical study in which we forecast volatility at horizons up to 60 days ahead. The results of the Monte Carlo study indicate that the MIDAS forecasts are the best ones at horizons of 15 days ahead and longer. In contrast, the iterated forecasts are superior for shorter horizons of 5 and 10 days ahead. In the empirical study, using daily returns of the S&P 500 and NASDAQ indexes, the results are not so conclusive, but suggest a better performance for the iterated forecasts. All analyses are out-of-sample. In the second paper, we compare several multi-period volatility forecasting models, specifically from MIDAS and HAR families. We perform our comparisons in terms of out-of-sample volatility forecasting accuracy. We also consider combinations of the models forecasts. Using intra-daily returns of the IBOVESPA, we calculate volatility measures such as realized variance, realized power variation, and realized bipower variation to be used as regressors in both models. Further, we use a nonparametric procedure for separately measuring the continuous sample path variation and the discontinuous jump part of the quadratic variation process. Thus, MIDAS and HAR specifications with the continuous sample path and jump variability measures as separate regressors are estimated. Our results in terms of mean squared error suggest that regressors involving volatility measures which are robust to jumps (i.e., realized bipower variation and realized power variation) are better at forecasting future volatility. However, we find that, in general, the forecasts based on these regressors are not statistically different from those based on realized variance (the benchmark regressor). Moreover, we find that, in general, the relative forecasting performances of the three approaches (i.e., MIDAS, HAR and forecast combinations) are statistically equivalent. In the third paper, we compare the Markov-Switching MIDAS (MS-MIDAS) and the Smooth Transition MIDAS (STMIDAS) models in terms of forecast accuracy. We perform a real time forecasting exercise in which out-of-sample forecasts for the quarterly U.S. output growth are generated using monthly financial indicators. In this exercise, we also consider linear MIDAS models, and other forecasting models (linear and nonlinear) that include information on the indicators (via temporal aggregation of the monthly observations) for comparative purposes. From the results of the empirical study, we observe that, in general, the MS-MIDAS models provide more accurate forecasts than do the STMIDAS models.
4

Ensaios em econometria aplicada a finanças e macroeconomia utilizando a abordagem de regressão MIDAS

Santos, Douglas Gomes dos January 2014 (has links)
A abordagem de regressão MIDAS (Mixed Data Sampling), proposta por Ghysels et al. (2004), permite relacionar diretamente variáveis em freqüências distintas. Esta característica é particularmente atraente quando se deseja utilizar os dados nas freqüências em que são disponibilizados, bem como quando o objetivo é calcular previsões multi-períodos à frente. Nesta tese, utiliza-se a abordagem de regressão MIDAS em três ensaios em que são realizadas aplicações empíricas nas áreas de finanças e macroeconomia. Os três ensaios são de caráter comparativo. Com aplicações em diferentes contextos de previsão, objetiva-se contribuir fornecendo evidências empíricas comparativas. No primeiro ensaio, são explorados resultados comparativos no contexto de previsão de volatilidade multi-períodos. Compara-se a abordagem MIDAS com dois métodos amplamente utilizados no cálculo de previsões multi-períodos à frente: as abordagens direta e iterada. Seus desempenhos relativos são investigados em um estudo de Monte Carlo e em um estudo empírico em que são computadas previsões de volatilidade para horizontes de até 60 dias à frente. Os resultados do estudo de Monte Carlo indicam que a abordagem MIDAS fornece as melhores previsões para os horizontes iguais ou superiores a 15 dias. Em contraste, as previsões geradas a partir da abordagem iterada são superiores nos horizontes de 5 e 10 dias à frente. No estudo empírico, utilizando-se retornos diários dos índices S&P 500 e NASDAQ, os resultados não são tão conclusivos, mas sugerem um melhor desempenho para a abordagem iterada. Todas as análises são fora da amostra. No segundo ensaio, são comparados diversos modelos de previsão de volatilidade multi-períodos, especificamente das famílias MIDAS e HAR. As comparações são realizadas em termos da acurácia das previsões de volatilidade fora da amostra. No segundo ensaio, são comparados diversos modelos de previsão de volatilidade multi-períodos, especificamente das famílias MIDAS e HAR. As comparações são realizadas em termos da acurácia das previsões de volatilidade fora da amostra. Combinações das previsões dos referidos modelos também são consideradas. São utilizados retornos intradiários do IBOVESPA no cálculo de medidas de volatilidade, tais como variância realizada, variação potente realizada e variação bipotente realizada, sendo estas medidas usadas como regressores em ambos os modelos. Adicionalmente, utiliza-se um procedimento não paramétrico na estimação das medidas de variabilidade dos componentes contínuo e de saltos do processo de variação quadrática. Estas medidas são utilizadas como regressores separados em especificações MIDAS e HAR. Quanto às evidências empíricas, os resultados em termos de erro quadrático médio sugerem que regressores baseados em medidas de volatilidade robustas a saltos (i.e., variação bipotente realizada e variação potente realizada) são melhores em prever volatilidade futura. Entretanto, observa-se que, em geral, as previsões baseadas nestes regressores não são estatisticamente diferentes daquelas baseadas na variância realizada (o regressor benchmark). Além disso, observa-se que, de modo geral, o desempenho relativo das três abordagens de previsão (i.e., MIDAS, HAR e combinação de previsões) é estatisticamente equivalente. No terceiro ensaio, busca-se comparar os modelos MS-MIDAS (Markov-Switching MIDAS) e STMIDAS (Smooth Transition MIDAS) em termos de acurácia preditiva. Para tanto, realiza-se um exercício de previsão em tempo real em que são geradas previsões fora da amostra para o crescimento do PIB trimestral dos Estados Unidos com o uso de indicadores financeiros mensais. Neste exercício, também são considerados modelos lineares MIDAS e outros modelos de previsão (lineares e não-lineares) que incluem informação dos indicadores (via agregação temporal das observações mensais) para fins comparativos de desempenho preditivo. A partir dos resultados do estudo empírico, observa-se que, de modo geral, os modelos MS-MIDAS fornecem previsões mais acuradas que os modelos STMIDAS. / The Mixed Data Sampling (MIDAS) regression approach, proposed by Ghysels et al. (2004), allows us to directly relate variables at different frequencies. This characteristic is particularly attractive when one wishes to use the data at their original sampling frequencies, as well as when the objective is to calculate multi-period-ahead forecasts. In this thesis, we use the MIDAS regression approach in three papers in which we perform empirical applications in the areas of finance and macroeconomics. All papers are comparative studies. With applications in different forecasting contexts, we aim at contributing with empirical comparative evidence. In the first paper, we explore comparative results in the context of multi-period volatility forecasting. We compare the MIDAS approach with two widely used methods of producing multi-period forecasts: the direct and the iterated approaches. Their relative performances are investigated in a Monte Carlo study and in an empirical study in which we forecast volatility at horizons up to 60 days ahead. The results of the Monte Carlo study indicate that the MIDAS forecasts are the best ones at horizons of 15 days ahead and longer. In contrast, the iterated forecasts are superior for shorter horizons of 5 and 10 days ahead. In the empirical study, using daily returns of the S&P 500 and NASDAQ indexes, the results are not so conclusive, but suggest a better performance for the iterated forecasts. All analyses are out-of-sample. In the second paper, we compare several multi-period volatility forecasting models, specifically from MIDAS and HAR families. We perform our comparisons in terms of out-of-sample volatility forecasting accuracy. We also consider combinations of the models forecasts. Using intra-daily returns of the IBOVESPA, we calculate volatility measures such as realized variance, realized power variation, and realized bipower variation to be used as regressors in both models. Further, we use a nonparametric procedure for separately measuring the continuous sample path variation and the discontinuous jump part of the quadratic variation process. Thus, MIDAS and HAR specifications with the continuous sample path and jump variability measures as separate regressors are estimated. Our results in terms of mean squared error suggest that regressors involving volatility measures which are robust to jumps (i.e., realized bipower variation and realized power variation) are better at forecasting future volatility. However, we find that, in general, the forecasts based on these regressors are not statistically different from those based on realized variance (the benchmark regressor). Moreover, we find that, in general, the relative forecasting performances of the three approaches (i.e., MIDAS, HAR and forecast combinations) are statistically equivalent. In the third paper, we compare the Markov-Switching MIDAS (MS-MIDAS) and the Smooth Transition MIDAS (STMIDAS) models in terms of forecast accuracy. We perform a real time forecasting exercise in which out-of-sample forecasts for the quarterly U.S. output growth are generated using monthly financial indicators. In this exercise, we also consider linear MIDAS models, and other forecasting models (linear and nonlinear) that include information on the indicators (via temporal aggregation of the monthly observations) for comparative purposes. From the results of the empirical study, we observe that, in general, the MS-MIDAS models provide more accurate forecasts than do the STMIDAS models.
5

Ensaios em econometria aplicada a finanças e macroeconomia utilizando a abordagem de regressão MIDAS

Santos, Douglas Gomes dos January 2014 (has links)
A abordagem de regressão MIDAS (Mixed Data Sampling), proposta por Ghysels et al. (2004), permite relacionar diretamente variáveis em freqüências distintas. Esta característica é particularmente atraente quando se deseja utilizar os dados nas freqüências em que são disponibilizados, bem como quando o objetivo é calcular previsões multi-períodos à frente. Nesta tese, utiliza-se a abordagem de regressão MIDAS em três ensaios em que são realizadas aplicações empíricas nas áreas de finanças e macroeconomia. Os três ensaios são de caráter comparativo. Com aplicações em diferentes contextos de previsão, objetiva-se contribuir fornecendo evidências empíricas comparativas. No primeiro ensaio, são explorados resultados comparativos no contexto de previsão de volatilidade multi-períodos. Compara-se a abordagem MIDAS com dois métodos amplamente utilizados no cálculo de previsões multi-períodos à frente: as abordagens direta e iterada. Seus desempenhos relativos são investigados em um estudo de Monte Carlo e em um estudo empírico em que são computadas previsões de volatilidade para horizontes de até 60 dias à frente. Os resultados do estudo de Monte Carlo indicam que a abordagem MIDAS fornece as melhores previsões para os horizontes iguais ou superiores a 15 dias. Em contraste, as previsões geradas a partir da abordagem iterada são superiores nos horizontes de 5 e 10 dias à frente. No estudo empírico, utilizando-se retornos diários dos índices S&P 500 e NASDAQ, os resultados não são tão conclusivos, mas sugerem um melhor desempenho para a abordagem iterada. Todas as análises são fora da amostra. No segundo ensaio, são comparados diversos modelos de previsão de volatilidade multi-períodos, especificamente das famílias MIDAS e HAR. As comparações são realizadas em termos da acurácia das previsões de volatilidade fora da amostra. No segundo ensaio, são comparados diversos modelos de previsão de volatilidade multi-períodos, especificamente das famílias MIDAS e HAR. As comparações são realizadas em termos da acurácia das previsões de volatilidade fora da amostra. Combinações das previsões dos referidos modelos também são consideradas. São utilizados retornos intradiários do IBOVESPA no cálculo de medidas de volatilidade, tais como variância realizada, variação potente realizada e variação bipotente realizada, sendo estas medidas usadas como regressores em ambos os modelos. Adicionalmente, utiliza-se um procedimento não paramétrico na estimação das medidas de variabilidade dos componentes contínuo e de saltos do processo de variação quadrática. Estas medidas são utilizadas como regressores separados em especificações MIDAS e HAR. Quanto às evidências empíricas, os resultados em termos de erro quadrático médio sugerem que regressores baseados em medidas de volatilidade robustas a saltos (i.e., variação bipotente realizada e variação potente realizada) são melhores em prever volatilidade futura. Entretanto, observa-se que, em geral, as previsões baseadas nestes regressores não são estatisticamente diferentes daquelas baseadas na variância realizada (o regressor benchmark). Além disso, observa-se que, de modo geral, o desempenho relativo das três abordagens de previsão (i.e., MIDAS, HAR e combinação de previsões) é estatisticamente equivalente. No terceiro ensaio, busca-se comparar os modelos MS-MIDAS (Markov-Switching MIDAS) e STMIDAS (Smooth Transition MIDAS) em termos de acurácia preditiva. Para tanto, realiza-se um exercício de previsão em tempo real em que são geradas previsões fora da amostra para o crescimento do PIB trimestral dos Estados Unidos com o uso de indicadores financeiros mensais. Neste exercício, também são considerados modelos lineares MIDAS e outros modelos de previsão (lineares e não-lineares) que incluem informação dos indicadores (via agregação temporal das observações mensais) para fins comparativos de desempenho preditivo. A partir dos resultados do estudo empírico, observa-se que, de modo geral, os modelos MS-MIDAS fornecem previsões mais acuradas que os modelos STMIDAS. / The Mixed Data Sampling (MIDAS) regression approach, proposed by Ghysels et al. (2004), allows us to directly relate variables at different frequencies. This characteristic is particularly attractive when one wishes to use the data at their original sampling frequencies, as well as when the objective is to calculate multi-period-ahead forecasts. In this thesis, we use the MIDAS regression approach in three papers in which we perform empirical applications in the areas of finance and macroeconomics. All papers are comparative studies. With applications in different forecasting contexts, we aim at contributing with empirical comparative evidence. In the first paper, we explore comparative results in the context of multi-period volatility forecasting. We compare the MIDAS approach with two widely used methods of producing multi-period forecasts: the direct and the iterated approaches. Their relative performances are investigated in a Monte Carlo study and in an empirical study in which we forecast volatility at horizons up to 60 days ahead. The results of the Monte Carlo study indicate that the MIDAS forecasts are the best ones at horizons of 15 days ahead and longer. In contrast, the iterated forecasts are superior for shorter horizons of 5 and 10 days ahead. In the empirical study, using daily returns of the S&P 500 and NASDAQ indexes, the results are not so conclusive, but suggest a better performance for the iterated forecasts. All analyses are out-of-sample. In the second paper, we compare several multi-period volatility forecasting models, specifically from MIDAS and HAR families. We perform our comparisons in terms of out-of-sample volatility forecasting accuracy. We also consider combinations of the models forecasts. Using intra-daily returns of the IBOVESPA, we calculate volatility measures such as realized variance, realized power variation, and realized bipower variation to be used as regressors in both models. Further, we use a nonparametric procedure for separately measuring the continuous sample path variation and the discontinuous jump part of the quadratic variation process. Thus, MIDAS and HAR specifications with the continuous sample path and jump variability measures as separate regressors are estimated. Our results in terms of mean squared error suggest that regressors involving volatility measures which are robust to jumps (i.e., realized bipower variation and realized power variation) are better at forecasting future volatility. However, we find that, in general, the forecasts based on these regressors are not statistically different from those based on realized variance (the benchmark regressor). Moreover, we find that, in general, the relative forecasting performances of the three approaches (i.e., MIDAS, HAR and forecast combinations) are statistically equivalent. In the third paper, we compare the Markov-Switching MIDAS (MS-MIDAS) and the Smooth Transition MIDAS (STMIDAS) models in terms of forecast accuracy. We perform a real time forecasting exercise in which out-of-sample forecasts for the quarterly U.S. output growth are generated using monthly financial indicators. In this exercise, we also consider linear MIDAS models, and other forecasting models (linear and nonlinear) that include information on the indicators (via temporal aggregation of the monthly observations) for comparative purposes. From the results of the empirical study, we observe that, in general, the MS-MIDAS models provide more accurate forecasts than do the STMIDAS models.

Page generated in 0.0852 seconds