1 |
Measuring the Nucleon Strangeness and Related Matrix Elements Using Lattice QCDFreeman, Walter January 2011 (has links)
We calculate the strange quark content of the nucleon, <N|ss|N> − <0|ss|0> using a novel method with the MILC lattice QCD gauge ensembles. The strangeness of the nucleon is related to the interaction cross section between dark matter and ordinary nuclear matter (e.g. in detectors) in many models. Previous results for this quantity suffered from uncontrolled systematic errors and/or large statistical uncertainties. The first result using our methods was the first modern calculation of the strangeness of the nucleon[76] with good control of systematic errors and reasonably small statistical errors, greatly reducing the uncertainty in dark matter detection cross sections. A refinement of this method allows for further reduction of statistical error. On the MILC Asqtad data, we obtain <N|ss|N> = 0.637(55)(stat)(74)(sys). The results obtained from this method are consistent with those obtained from other commonly-used methods applied to the MILC data. We also calculate the disconnected part of the pion-nucleon sigma term and the intrinsic charm of the nucleon using this method. The intrinsic charm has large statistical errors but is consistent with a perturbative calculation.
|
2 |
Implementação do software MILC no estudo da QCD completa / Implementation of the MILC package in the study of full QCDFernando Henrique e Paula da Luz 12 March 2010 (has links)
A CromoDinâmica Quântica (QCD) é a teoria quântica de campos que descreve as interações fortes entre quarks, que são os constituintes fundamentais das partículas do núcleo atômico. Devido ao caráter peculiar destas interações, o estudo da QCD não pode ser realizado pelos métodos usuais em teorias quânticas de campos, baseados em expansões perturbativas. O estudo não-perturbativo da QCD a partir de primeiros princípios torna-se possível através da formulação de rede da teoria, que equivale a um modelo de mecânica estatística clássica, para o qual podem ser realizadas simulações numéricas através de métodos de Monte Carlo. A área de simulações numéricas da QCD representa uma das maiores aplicações atuais da computação de alto desempenho, sendo realizada nos principais centros computacionais do mundo. As grandes exigências do trabalho de pesquisa nesta área contribuíram inclusive para o desenvolvimento de novas arquiteturas computacionais. O uso de processamento paralelo é vital nessas simulações, principalmente nos casos em que está envolvida a simulação da chamada QCD completa, onde se consideram os efeitos dos quarks dinâmicos. Vários pacotes contendo implementações de algoritmos para o estudo da QCD começam a ser disponibilizados por grupos de pesquisa na área. Nosso foco neste trabalho é voltado para o pacote MILC. Além de fazer uma descrição detalhada da forma de utilização deste pacote, realizamos aqui um acompanhamento da evolução dos métodos empregados, desde o Método de Monte Carlo aplicado no algoritmo de Metropolis até a elaboração do algoritmo RHMC, introduzido recentemente. Fazemos uma comparação de e_ciência entre o RHMC e o algoritmo R, que foi o mais utilizado por décadas. / Quantum ChromoDinamics (QCD) is the quantum field theory that describes the strong interactions between quarks, which are the fundamental constituents of particles in the atomic nucleus. Due to the peculiar characteristic of these interactions, the study of QCD cannot be carried out by usual methods in quantum field theory, which are based on pertubative expansions. The non-pertubative study of QCD from first principles becomes possible through the lattice formulation of the theory, which is equivalent to a classical statistical mechanics model, which in turn can be carried out by numerical simulations using Monte Carlo methods. The field of numerical simulations of QCD is one of the main applications of high performance computing, and is perfomed in most major computational centers around the world. The demanding requirements needed in this field led also to the development of new computational architectures. The use of parallel processing is vital in these types of simulations, especially in cases that involve what is known as full QCD, where the effects of dynamic quarks are taken into account. Several packages with algorithms implemented for the study of QCD have been recently made available by research groups in this field. The focus of this work is the MILC package. Here we make a detailed description of how to use this package and a follow up of the used methods, from the Monte Carlo method applied in the Metropolis algorithm up to the development of the RHMC algorithm, recently introduced. Comparisons are made between the e_ciency of RHMC and the R algorithm, which was the most used in the past decades.
|
3 |
Implementação do software MILC no estudo da QCD completa / Implementation of the MILC package in the study of full QCDLuz, Fernando Henrique e Paula da 12 March 2010 (has links)
A CromoDinâmica Quântica (QCD) é a teoria quântica de campos que descreve as interações fortes entre quarks, que são os constituintes fundamentais das partículas do núcleo atômico. Devido ao caráter peculiar destas interações, o estudo da QCD não pode ser realizado pelos métodos usuais em teorias quânticas de campos, baseados em expansões perturbativas. O estudo não-perturbativo da QCD a partir de primeiros princípios torna-se possível através da formulação de rede da teoria, que equivale a um modelo de mecânica estatística clássica, para o qual podem ser realizadas simulações numéricas através de métodos de Monte Carlo. A área de simulações numéricas da QCD representa uma das maiores aplicações atuais da computação de alto desempenho, sendo realizada nos principais centros computacionais do mundo. As grandes exigências do trabalho de pesquisa nesta área contribuíram inclusive para o desenvolvimento de novas arquiteturas computacionais. O uso de processamento paralelo é vital nessas simulações, principalmente nos casos em que está envolvida a simulação da chamada QCD completa, onde se consideram os efeitos dos quarks dinâmicos. Vários pacotes contendo implementações de algoritmos para o estudo da QCD começam a ser disponibilizados por grupos de pesquisa na área. Nosso foco neste trabalho é voltado para o pacote MILC. Além de fazer uma descrição detalhada da forma de utilização deste pacote, realizamos aqui um acompanhamento da evolução dos métodos empregados, desde o Método de Monte Carlo aplicado no algoritmo de Metropolis até a elaboração do algoritmo RHMC, introduzido recentemente. Fazemos uma comparação de e_ciência entre o RHMC e o algoritmo R, que foi o mais utilizado por décadas. / Quantum ChromoDinamics (QCD) is the quantum field theory that describes the strong interactions between quarks, which are the fundamental constituents of particles in the atomic nucleus. Due to the peculiar characteristic of these interactions, the study of QCD cannot be carried out by usual methods in quantum field theory, which are based on pertubative expansions. The non-pertubative study of QCD from first principles becomes possible through the lattice formulation of the theory, which is equivalent to a classical statistical mechanics model, which in turn can be carried out by numerical simulations using Monte Carlo methods. The field of numerical simulations of QCD is one of the main applications of high performance computing, and is perfomed in most major computational centers around the world. The demanding requirements needed in this field led also to the development of new computational architectures. The use of parallel processing is vital in these types of simulations, especially in cases that involve what is known as full QCD, where the effects of dynamic quarks are taken into account. Several packages with algorithms implemented for the study of QCD have been recently made available by research groups in this field. The focus of this work is the MILC package. Here we make a detailed description of how to use this package and a follow up of the used methods, from the Monte Carlo method applied in the Metropolis algorithm up to the development of the RHMC algorithm, recently introduced. Comparisons are made between the e_ciency of RHMC and the R algorithm, which was the most used in the past decades.
|
4 |
Microcapteurs de hautes fréquences pour des mesures en aéroacoustique / High Frequency MEMS Sensor for Aeroacoustic MeasurementsZhou, Zhijian 21 January 2013 (has links)
L’aéroacoustique est une filière de l'acoustique qui étudie la génération de bruit par un mouvement fluidique turbulent ou par les forces aérodynamiques qui interagissent avec les surfaces. Ce secteur en pleine croissance a attiré des intérêts récents en raison de l’évolution de la transportation aérienne, terrestre et spatiale. Les microphones avec une bande passante de plusieurs centaines de kHz et une plage dynamique couvrant de 40Pa à 4 kPa sont nécessaires pour les mesures aéroacoustiques. Dans cette thèse, deux microphones MEMS de type piézorésistif à base de silicium polycristallin (poly-Si) latéralement cristallisé par l’induction métallique (MILC) sont conçus et fabriqués en utilisant respectivement les techniques de microfabrication de surface et de volume. Ces microphones sont calibrés à l'aide d'une source d’onde de choc (N-wave) générée par une étincelle électrique. Pour l'échantillon fabriqué par le micro-usinage de surface, la sensibilité statique mesurée est 0.4μV/V/Pa, la sensibilité dynamique est 0.033μV/V/Pa et la plage fréquentielle couvre à partir de 100 kHz avec une fréquence du premier mode de résonance à 400kHz. Pour l'échantillon fabriqué par le micro-usinage de volume, la sensibilité statique mesurée est 0.28μV/V/Pa, la sensibilité dynamique est 0.33μV/V/Pa et la plage fréquentielle couvre à partir de 6 kHz avec une fréquence du premier mode de résonance à 715kHz. / Aero-acoustics, a branch of acoustics which studies noise generation via either turbulent fluid motion or aerodynamic forces interacting with surfaces, is a growing area and has received fresh emphasis due to advances in air, ground and space transportation. Microphones with a bandwidth of several hundreds of kHz and a dynamic range covering 40Pa to 4kPa are needed for aero-acoustic measurements. In this thesis, two metal-induced-lateral-crystallized (MILC) polycrystalline silicon (poly-Si) based piezoresistive type MEMS microphones are designed and fabricated using surface micromachining and bulk micromachining techniques, respectively. These microphones are calibrated using an electrical spark generated shockwave (N-wave) source. For the surface micromachined sample, the measured static sensitivity is 0.4μV/V/Pa, dynamic sensitivity is 0.033μV/V/Pa and the frequency range starts from 100kHz with a first mode resonant frequency of 400kHz. For the bulk micromachined sample, the measured static sensitivity is 0.28μV/V/Pa, dynamic sensitivity is 0.33μV/V/Pa and the frequency range starts from 6kHz with a first mode resonant frequency of 715kHz.
|
5 |
Microcapteur de hautes fréquences pour des mesures en aéroacoustiqueZhou, Zhijian J. 21 January 2013 (has links) (PDF)
L'aéroacoustique est une filière de l'acoustique qui étudie la génération de bruit par un mouvement fluidique turbulent ou par les forces aérodynamiques qui interagissent avec les surfaces. Ce secteur en pleine croissance a attiré des intérêts récents en raison de l'évolution de la transportation aérienne, terrestre et spatiale. Alors que les tests sur un objet réel sont possibles, leur implantation est généralement compliquée et les résultats sont facilement corrompus par le bruit ambiant. Par conséquent, les tests plus strictement contrôlés au laboratoire utilisant les modèles de dimensions réduites sont préférables. Toutefois, lorsque les dimensions sont réduites par un facteur de M, l'amplitude et la bande passante des ondes acoustiques correspondantes se multiplient respectivement par 10logM en décibels et par M. Les microphones avec une bande passante de plusieurs centaines de kHz et une plage dynamique couvrant de 40Pa à 4 kPa sont ainsi nécessaires pour les mesures aéroacoustiques. Les microphones MEMS ont été étudiés depuis plus de vingt ans, et plus récemment, l'industrie des semiconducteurs se concentre de plus en plus sur ce domaine. Par rapport à tous les autres principes de fonctionnement, grâce à la miniaturisation, les microphones de type piézorésistif peuvent atteindre une bande passante plus élevée et ils sont ainsi bien adaptés pour les mesures aéroacoustiques. Dans cette thèse, deux microphones MEMS de type piézorésistif à base de silicium polycristallin (poly-Si) latéralement cristallisé par l'induction métallique (MILC) sont conçus et fabriqués en utilisant respectivement les techniques de microfabrication de surface et de volume. Ces microphones sont calibrés à l'aide d'une source d'onde de choc (N-wave) générée par une étincelle électrique. Pour l'échantillon fabriqué par le micro-usinage de surface, la sensibilité statique mesurée est de 0.4 μV/V/Pa, la sensibilité dynamique est de 0.033 μV/V/Pa et la plage fréquentielle commence à 100 kHz avec une fréquence du premier mode de résonance à 400 kHz. Pour l'échantillon fabriqué par le micro-usinage de volume, la sensibilité statique mesurée est de 0.28 μV/V/Pa, la sensibilité dynamique est de 0.33 μV/V/Pa et la plage fréquentielle commence à 6 kHz avec une fréquence du premier mode de résonance à 715 kHz.
|
6 |
Microcapteurs de hautes fréquences pour des mesures en aéroacoustiqueZhou, Zhijian 21 January 2013 (has links) (PDF)
L'aéroacoustique est une filière de l'acoustique qui étudie la génération de bruit par un mouvement fluidique turbulent ou par les forces aérodynamiques qui interagissent avec les surfaces. Ce secteur en pleine croissance a attiré des intérêts récents en raison de l'évolution de la transportation aérienne, terrestre et spatiale. Les microphones avec une bande passante de plusieurs centaines de kHz et une plage dynamique couvrant de 40Pa à 4 kPa sont nécessaires pour les mesures aéroacoustiques. Dans cette thèse, deux microphones MEMS de type piézorésistif à base de silicium polycristallin (poly-Si) latéralement cristallisé par l'induction métallique (MILC) sont conçus et fabriqués en utilisant respectivement les techniques de microfabrication de surface et de volume. Ces microphones sont calibrés à l'aide d'une source d'onde de choc (N-wave) générée par une étincelle électrique. Pour l'échantillon fabriqué par le micro-usinage de surface, la sensibilité statique mesurée est 0.4μV/V/Pa, la sensibilité dynamique est 0.033μV/V/Pa et la plage fréquentielle couvre à partir de 100 kHz avec une fréquence du premier mode de résonance à 400kHz. Pour l'échantillon fabriqué par le micro-usinage de volume, la sensibilité statique mesurée est 0.28μV/V/Pa, la sensibilité dynamique est 0.33μV/V/Pa et la plage fréquentielle couvre à partir de 6 kHz avec une fréquence du premier mode de résonance à 715kHz.
|
Page generated in 0.0207 seconds