331 |
Quantization Techniques in Linearly Precoded Multiuser MIMO System with Limited FeedbackIslam, Muhammad 01 January 2011 (has links)
Multi-user wireless systems with multiple antennas can drastically increase the capac-
ity while maintaining the quality of service requirements. The best performance of these
systems is obtained at the presence of instantaneous channel knowledge. Since uplink-downlink channel reciprocity does not hold in frequency division duplex and broadband time division duplex systems, efficient channel quantization becomes important. This thesis focuses on different quantization techniques in a linearly precoded multi-user wireless system.
Our work provides three major contributions. First, we come up with an end-to-end transceiver design, incorporating precoder, receive combining and feedback policy, that
works well at low feedback overhead. Second, we provide optimal bit allocation across the
gain and shape of a complex vector to reduce the quantization error and investigate its
effect in the multiuser wireless system. Third, we design an adaptive differential quantizer that reduces feedback overhead by utilizing temporal correlation of the channels in a time varying scenario.
|
332 |
Algorithme d'ordonnancement et d'activation de liens dans les réseaux sans fil maillés basés sur les systèmes MIMODriouech, Abdelhalim January 2009 (has links) (PDF)
Les réseaux sans fil maillés (Wireless Mesh Networks) sont considérés comme l'une des solutions les plus prometteuses pour améliorer la couverture réseau et accroître le nombre de clients partageant un accès sans fil à large bande (Wireless broadband access). L'introduction des systèmes de communication sans fil à antennes multiples appelés communément MIMO au niveau de la couche physique des réseaux WMNs permet d'élever les performances en termes de débit maximal et ainsi supporter un plus grand nombre de clients. Ceci dit, l'absence d'un algorithme ordonnancement et d'activation de liens au niveau de la couche d'accès au support partagé (MAC) pour un réseau sans fil maillé basé sur des liens MIMO résulte en des inégalités entre les clients en termes de débit de transmission et conduit par conséquent à des faibles performances du système. Dans le but d'éviter cela, ce travail propose un algorithme d'ordonnancement et d'activation de liens pour les réseaux sans fil maillés basé sur des liens MIMO. L'ordonnanceur assure une équité entre les noeuds du réseau, améliore l'efficacité spectrale et le débit maximal atteint par le réseau. Les simulations présentées démontrent que l'algorithme proposé permet de réaliser un débit plus élevé qu'une solution d'ordonnancement opportuniste basé sur une méthode d'accès par multiplexage temporel (TDMA). En le comparant à la recherche exhaustive qui constitue la solution théorique (non pratique) et optimale au problème d'ordonnancement considéré, il s'est avéré que notre algorithme d'ordonnancement permet d'atteindre un débit proche du débit réalisé par la recherche exhaustive malgré que la complexité algorithmique de cette dernière soit beaucoup plus élevée que celle de notre solution. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Algorithmes d'ordonnancement, Réseaux sans fil maillés, Systèmes de communication sans fil MIMO, Capacité de Shannon, Simulation des réseaux.
|
333 |
Electromagnetic Dimensionality of Deterministic Multi-Polarization MIMO SystemsElnaggar, Michel January 2007 (has links)
Multiple-Input Multiple-Output (MIMO) systems are viewed as the last available supply for the ever-growing demand on higher data rates in modern wireless communication systems. Smart exploitation of the traditional wireless resources (time-slots or bandwidth under the same transmit power level) has reached its saturation point. By making better use of the free space between the radio links, based on the multipath radio wave propagation, MIMO systems have shown significant capacity improvement with the same traditional wireless resources.
In this multi-disciplinary research, we are exploring the link between the electromagnetic propagation and the information theory. Unlike the majority of recent research work, we model the propagation channel matrix between the transmit/receive elements in a deterministic manner under the Maxwellian framework. Having included the environment properties and the characteristics of the radiating elements, the deterministic approach provides a realistic assessment of the MIMO system performance in specific scenarios. The problem addressed in this research is the evaluation of the multi-antenna systems degrees of freedom (DOF) by employing all the available electromagnetic diversity resources (spatial, pattern and polarization).
Based on a developed well-defined power independent dimensionality (PID) metric, we start by investigating the information-bearing potential of the collocated multi-polarization MIMO system. We study the hexapole system (exploiting both electric and magnetic fields in conveying independent information) and compare it to the tripole systems (exploiting the vectorial polarization diversity of one field only). We present numerical results for 3 deterministic scenarios: a canonical free-space (near and far field exact solution), a canonical perfect electric conductor (PEC) corridor using rigorous modal analysis, and a lossy-wall corridor using image ray tracing (IRT).
Next, we provide deterministic results for the more interesting sampling problem of the electromagnetic vector fields: given a specific MIMO array size, what is the optimum number of packed multi-polarization antennas (i.e. multi-polarization 1D, 2D or 3D sampling) that yields the largest PID for a given environment and what is the estimate of this PID? Using a canonical case of multi-polarized arrays inside a multipath-rich PEC corridor, we show that the spatial frequency spectrum of the electromagnetic field governs the optimum PID of the site-specific scenario. The problem is analogous to the DOF determination of an essentially time-limited-band-limited 1D scalar function using the framework of the prolate spheroidal wave functions. We also present simulation results for the same sampling problem in a lossy-wall indoor environment using IRT.
|
334 |
Scheduling in Large Scale MIMO Downlink SystemsBayesteh, Alireza January 2008 (has links)
This dissertation deals with
the problem of scheduling in wireless MIMO (Multiple-Input Multiple-Output) downlink systems. The focus is on the large-scale systems when the number of subscribers is large.
In part one, the problem of user selection in MIMO Broadcast channel is studied. An efficient user selection algorithm is proposed and is shown to achieve the sum-rate capacity of the system asymptotically (in terms of the number of users), while requiring (i)~low-complexity precoding scheme of zero-forcing beam-forming at the base station, (ii)~low amount of feedback from the users to the base station, (iii)~low complexity of search.
Part two studies the problem of MIMO broadcast channel with partial Channel State Information (CSI) at the transmitter. The necessary and sufficient conditions for the amount of CSI at the transmitter (which is provided to via feedback links from the receivers) in order to achieve the sum-rate capacity of the system are derived. The analysis is performed in various singnal to noise ratio regimes.
In part three, the problem of sum-rate maximization in a broadcast channel with large number of users, when each user has a stringent delay constraint, is studied. In this part, a new definition of fairness, called short-term fairness is introduced. A scheduling algorithm is proposed that achieves: (i) Maximum sum-rate throughput and (ii) Maximum short-term fairness of the system, simultaneously, while satisfying the delay constraint for each individual user with probability one.
In part four, the sum-rate capacity of MIMO broadcast channel, when the channels are Rician fading, is derived in various scenarios in terms of the value of the Rician factor and the distribution of the specular components of the channel.
|
335 |
IEEE 802.11n MIMO Modeling and Channel Estimation ImplementationXu, Xin January 2012 (has links)
With the increasing demand of higher data rate for telecommunication, the IEEE802.11n standard was constituted in 2009. Themost important character of the standard is MIMO-OFDM, which not only improves the throughput but also the spectrumefficiency and channel capacity. This report focuses on the physical layer IEEE802.11n model. By utilizing an existingSimulink based IEEE802.11n system, functionalities like MIMO (up to 4*4), OFDM, STBC, Beamforming, and MMSEdetector are simulated. The results such as bit error rate, packet error rate and bit rate with different system settings are given.Furthermore, the channel estimation process is clarified, and a DSP builder based MMSE detector is realized, which can fulfillexactly the same function as the Simulink model.
|
336 |
Electromagnetic Dimensionality of Deterministic Multi-Polarization MIMO SystemsElnaggar, Michel January 2007 (has links)
Multiple-Input Multiple-Output (MIMO) systems are viewed as the last available supply for the ever-growing demand on higher data rates in modern wireless communication systems. Smart exploitation of the traditional wireless resources (time-slots or bandwidth under the same transmit power level) has reached its saturation point. By making better use of the free space between the radio links, based on the multipath radio wave propagation, MIMO systems have shown significant capacity improvement with the same traditional wireless resources.
In this multi-disciplinary research, we are exploring the link between the electromagnetic propagation and the information theory. Unlike the majority of recent research work, we model the propagation channel matrix between the transmit/receive elements in a deterministic manner under the Maxwellian framework. Having included the environment properties and the characteristics of the radiating elements, the deterministic approach provides a realistic assessment of the MIMO system performance in specific scenarios. The problem addressed in this research is the evaluation of the multi-antenna systems degrees of freedom (DOF) by employing all the available electromagnetic diversity resources (spatial, pattern and polarization).
Based on a developed well-defined power independent dimensionality (PID) metric, we start by investigating the information-bearing potential of the collocated multi-polarization MIMO system. We study the hexapole system (exploiting both electric and magnetic fields in conveying independent information) and compare it to the tripole systems (exploiting the vectorial polarization diversity of one field only). We present numerical results for 3 deterministic scenarios: a canonical free-space (near and far field exact solution), a canonical perfect electric conductor (PEC) corridor using rigorous modal analysis, and a lossy-wall corridor using image ray tracing (IRT).
Next, we provide deterministic results for the more interesting sampling problem of the electromagnetic vector fields: given a specific MIMO array size, what is the optimum number of packed multi-polarization antennas (i.e. multi-polarization 1D, 2D or 3D sampling) that yields the largest PID for a given environment and what is the estimate of this PID? Using a canonical case of multi-polarized arrays inside a multipath-rich PEC corridor, we show that the spatial frequency spectrum of the electromagnetic field governs the optimum PID of the site-specific scenario. The problem is analogous to the DOF determination of an essentially time-limited-band-limited 1D scalar function using the framework of the prolate spheroidal wave functions. We also present simulation results for the same sampling problem in a lossy-wall indoor environment using IRT.
|
337 |
Scheduling in Large Scale MIMO Downlink SystemsBayesteh, Alireza January 2008 (has links)
This dissertation deals with
the problem of scheduling in wireless MIMO (Multiple-Input Multiple-Output) downlink systems. The focus is on the large-scale systems when the number of subscribers is large.
In part one, the problem of user selection in MIMO Broadcast channel is studied. An efficient user selection algorithm is proposed and is shown to achieve the sum-rate capacity of the system asymptotically (in terms of the number of users), while requiring (i)~low-complexity precoding scheme of zero-forcing beam-forming at the base station, (ii)~low amount of feedback from the users to the base station, (iii)~low complexity of search.
Part two studies the problem of MIMO broadcast channel with partial Channel State Information (CSI) at the transmitter. The necessary and sufficient conditions for the amount of CSI at the transmitter (which is provided to via feedback links from the receivers) in order to achieve the sum-rate capacity of the system are derived. The analysis is performed in various singnal to noise ratio regimes.
In part three, the problem of sum-rate maximization in a broadcast channel with large number of users, when each user has a stringent delay constraint, is studied. In this part, a new definition of fairness, called short-term fairness is introduced. A scheduling algorithm is proposed that achieves: (i) Maximum sum-rate throughput and (ii) Maximum short-term fairness of the system, simultaneously, while satisfying the delay constraint for each individual user with probability one.
In part four, the sum-rate capacity of MIMO broadcast channel, when the channels are Rician fading, is derived in various scenarios in terms of the value of the Rician factor and the distribution of the specular components of the channel.
|
338 |
Relay-aided Interference Alignment in Wireless NetworksNourani, Behzad January 2011 (has links)
Resource management in wireless networks is one of the key factors in maximizing the overall throughput. Contrary to popular belief, dividing the resources in a dense network does not yield the best results. A method that has been developed recently shares the spectrum amongst all the users in such a way that each node can potentially utilize about half of all the available resources. This new technique is often referred to as Interference Alignment and excels based on the fact that the amount of the network resources assigned to a user does not go to zero as the number of users in the network increases. Unfortunately it is still very difficult to implement the interference alignment concepts in practice. This thesis investigates some of the low-complexity solutions to integrate interference alignment ideas into the existing wireless networks.
In the third and fourth chapters of this thesis, it is shown that introducing relays to a quasi-static wireless network can be very beneficial in terms of achieving higher degrees of freedom. The relays store the signals being communicated in the network and then send a linear combination of those signals. Using the proposed scheme, it is shown that although the relays cannot decode the original information, they can transform the equivalent channel in such a way that performing interference alignment becomes much easier. Investigating the required output power of the relays shows that it can scale either slower or faster than the output power of the main transmitters. This opens new doors for the applications that have constraints on the accessible output powers in the network nodes. The results are valid for both $X$ Channel and Interference Channel network topologies.
In Chapter Five, the similarities between full-duplex transmitters and relays are examined. The results suggest that the transmitters can play the relay roles for offering easier interference alignment. Similar to the relay-based alignment, in the presented scheme full-duplex transmitters listen to the signals from other transmitters and use this information during the subsequent transmission periods. Studying the functionality of the full-duplex transmitters from the receivers' side shows the benefits of having a minimal cooperation between transmitters without even being able to decode the signals. It is also proved that the degrees of freedom for the $N$-user Interference Channel with full-duplex transmitters can be $\sqrt{\frac{N}{2}}$. The results offer an easy way to recover a portion of degrees of freedom with manageable complexity suited for practical systems.
|
339 |
Electronic Equalization of High-Speed Multi-mode Fiber LinksBalemarthy, Kasyapa 09 July 2007 (has links)
The objective of this research is to investigate low-complexity, efficient electronic equalizers to increase the data rate and possibly extend the reach of multi-mode fiber (MMF) links. Specifically, we begin by baselining the performance limits of conventional receivers. A robust, in-house mode solver was developed as part of this research and is currently being used by one of the largest fiber manufacturers in their internal R &D work.
A detailed performance assessment of the impact of decision feedback equalizers has been conducted using an extensive model of the installed fiber base. The finite-length DFE results were instrumental in influencing the IEEE 802.3aq standardization effort. In particular, we
were able to achieve a reach of 220m but the original goal of 300m was unattainable on 99% of the installed fiber base using DFEs of moderate complexity.
A low-cost equalizer that has excellent performance, the bi-directional DFE, was applied to the MMF channel for the first time. The performance of the infinite-length BiDFE was characterized without any constraints on the signal-to-noise ratio and on the receiver front-end, as has been previously done in the literature. A new joint optimization technique that helps the finite-length BiDFE perform significantly better than the infinite-length DFE was developed. It was shown that given a finite number of filter coefficients, the BiDFE utilizes them better than the conventional DFE. Furthermore, a reach of 350-400m at a data rate of 10 Gbps was shown to be feasible with equalizers of complexity similar to that currently available.
A multiple-input, multiple-output (MIMO) characterization of the MMF channel was developed through the simultaneous use of both center and
offset launch together with the two-segment photo-detector. The potential benefit of MIMO processing for MMF links was demonstrated by computing Shannon capacity bounds. It was established that the 2x2 MIMO channel performs about 1.4 dBo better than the conventional 1x1 link at 10 Gbps with practical joint launch. The MIMO scheme still has a performance improvement of 1dBo at 20 Gbps thereby indicating that 20 Gbps transmission is feasible.
Performance evaluation of multi-km MMF links was conducted using a comprehensive model that accounts for mode coupling effects. It was determined that ignoring mode coupling can result in under-estimation of the optimum DFE penalty by as much as 1~dBo for 1km links.
|
340 |
Transmission Efficiency Enhancement for Scalable H.264/AVC over MIMO and Cooperative Communication NetworksChen, Shih-Hung 29 August 2010 (has links)
This thesis proposes a strategy for enhancing the efficiency of scalable H.264/AVC video transmission over multi-input multi-output (MIMO) and cooperative communication systems. For scalable video coding (SVC) transmission over MIMO wireless systems, a channel selection algorithm is used to enhance transmission rate. The proposed algorithm allows SVC layers to select channels individually in wireless MIMO systems based on channel state information for transmission rate enhancement. Here, this difficult problem is converted into a mathematical optimization problem to improve SVC performance during video transmission. Experimental results show that the proposed method achieves a higher transmission rate over MIMO systems compared to the existing scheme. For SVC transmission over cooperative communication systems, the algorithm allows each SVC layer to choose an appropriate relay based on channel conditions and SVC layer priority. Thus, SVC data is protected effectively. Experimental results show that video quality obtained by the algorithm exceeds that of non-cooperative systems.
|
Page generated in 0.0295 seconds