• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 1
  • Tagged with
  • 66
  • 66
  • 53
  • 53
  • 16
  • 14
  • 13
  • 13
  • 13
  • 13
  • 12
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Uso de técnicas de mineração de textos e ferramentas de visualização como apoio à pesquisa científica

Frascareli, Aline Maria January 2013 (has links)
No description available.
12

Aprendizado não supervisionado de hierarquias de tópicos a partir de coleções textuais dinâmicas / Unsupervised learning of topic hierarchies from dynamic text collections

Ricardo Marcondes Marcacini 19 May 2011 (has links)
A necessidade de extrair conhecimento útil e inovador de grandes massas de dados textuais, tem motivado cada vez mais a investigação de métodos para Mineração de Textos. Dentre os métodos existentes, destacam-se as iniciativas para organização de conhecimento por meio de hierarquias de tópicos, nas quais o conhecimento implícito nos textos é representado em tópicos e subtópicos, e cada tópico contém documentos relacionados a um mesmo tema. As hierarquias de tópicos desempenham um papel importante na recupera ção de informação, principalmente em tarefas de busca exploratória, pois permitem a análise do conhecimento de interesse em diversos níveis de granularidade e exploração interativa de grandes coleções de documentos. Para apoiar a construção de hierarquias de tópicos, métodos de agrupamento hierárquico têm sido utilizados, uma vez que organizam coleções textuais em grupos e subgrupos, de forma não supervisionada, por meio das similaridades entre os documentos. No entanto, a maioria dos métodos de agrupamento hierárquico não é adequada em cenários que envolvem coleções textuais dinâmicas, pois são exigidas frequentes atualizações dos agrupamentos. Métodos de agrupamento que respeitam os requisitos existentes em cenários dinâmicos devem processar novos documentos assim que são adicionados na coleção, realizando o agrupamento de forma incremental. Assim, neste trabalho é explorado o uso de métodos de agrupamento incremental para o aprendizado não supervisionado de hierarquias de tópicos em coleções textuais dinâmicas. O agrupamento incremental é aplicado na construção e atualização de uma representação condensada dos textos, que mantém um sumário das principais características dos dados. Os algoritmos de agrupamento hierárquico podem, então, ser aplicados sobre as representa ções condensadas, obtendo-se a organização da coleção textual de forma mais eficiente. Foram avaliadas experimentalmente três estratégias de agrupamento incremental da literatura, e proposta uma estratégia alternativa mais apropriada para hierarquias de tópicos. Os resultados indicaram que as hierarquias de tópicos construídas com uso de agrupamento incremental possuem qualidade próxima às hierarquias de tópicos construídas por métodos não incrementais, com significativa redução do custo computacional / The need to extract new and useful knowledge from large textual collections has motivated researchs on Text Mining methods. Among the existing methods, initiatives for the knowledge organization by topic hierarchies are very popular. In the topic hierarchies, the knowledge is represented by topics and subtopics, and each topic contains documents of similar content. They play an important role in information retrieval, especially in exploratory search tasks, allowing the analysis of knowledge in various levels of granularity and interactive exploration of large document collections. Hierarchical clustering methods have been used to support the construction of topic hierarchies. These methods organize textual collections in clusters and subclusters, in an unsupervised manner, using similarities among documents. However, most existing hierarchical clustering methods is not suitable for scenarios with dynamic text collections, since frequent clustering updates are necessary. Clustering methods that meet these requirements must process new documents that are inserted into textual colections, in general, through incremental clustering. Thus, we studied the incremental clustering methods for unsupervised learning of topic hierarchies for dynamic text collections. The incremental clustering is used to build and update a condensed representation of texts, which maintains a summary of the main features of the data. The hierarchical clustering algorithms are applied in these condensed representations, obtaining the textual organization more efficiently. We experimentally evaluate three incremental clustering algorithms available in the literature. Also, we propose an alternative strategy more appropriate for construction of topic hieararchies. The results indicated that the topic hierarchies construction using incremental clustering have quality similar to non-incremental methods. Furthermore, the computational cost is considerably reduced using incremental clustering methods
13

Identificação e validação do perfil neurolinguístico de programadores através da mineração de repositórios de software

Rodrigues Júnior, Methanias Colaço 25 January 2013 (has links)
Submitted by Santos Davilene (davilenes@ufba.br) on 2013-01-25T11:15:23Z No. of bitstreams: 1 TESE_Methanias Rodrigues Júnior.pdf: 1771083 bytes, checksum: a086d4543ad576bc8ac845022acd6eb5 (MD5) / Made available in DSpace on 2013-01-25T11:15:23Z (GMT). No. of bitstreams: 1 TESE_Methanias Rodrigues Júnior.pdf: 1771083 bytes, checksum: a086d4543ad576bc8ac845022acd6eb5 (MD5) / Hodiernamente, o processo de desenvolvimento de software pode contar com a utilização de diversas ferramentas de apoio. Os sistemas de controle de versão, as listas de discussão entre as pessoas envolvidas no projeto e os sistemas de rastreamento de erros são usados freqüentemente para ajudar a controlar o andamento de projetos de software, produzindo repositórios de dados históricos. Nos últimos anos, pesquisadores vêm realizando análises lingüísticas nas listas de discussão de projetos de software para compreender as complexidades e especificidades do seu desenvolvimento. Uma abordagem inovadora para isso é usar a Teoria da Neuro-Lingüística. A Neuro-Lingüística postula que indivíduos, em contextos específicos, utilizam um sistema representacional preferencial (SRP) para cognição. Isto significa que apesar de diferentes recursos e canais cognitivos serem usados pelos desenvolvedores para entender o software, existem sistemas representacionais preferidos pelos mesmos. Nesta tese, apresentamos uma ferramenta de análise psicométrica baseada na Neuro-Lingüística (NEUROMINER) para classificar os Sistemas Representacionais Preferidos (SRP) de desenvolvedores de software. A avaliação experimental da abordagem foi realizada em três experimentos que visaram testar a classificação do SRP: (1) Um estudo realizado nas listas de discussão dos projetos do servidor Apache e do PostgreSQL; (2) Uma pesquisa de campo com engenheiros de software para estabelecer quais os tipos de sistemas representacionais são os preferidos pelos mesmos; e (3) Um experimento controlado feito na indústria para avaliação da efetividade da ferramenta neste tipo de ambiente. Os resultados indicaram que a nossa abordagem pode ser usada para classificar engenheiros de software com relação às suas preferências de representação para cognição. Esta classificação pode nortear a alocação de desenvolvedores em tarefas específicas e, possivelmente, melhorar a comunicação em organizações de desenvolvimento de software. / Salvador
14

Aplicação de técnicas de mineração de texto na detecção de discrepâncias em documentos fiscais

Madeira, Renato de Oliveira Caldas 29 September 2015 (has links)
Submitted by RENATO DE OLIVEIRA CALDAS MADEIRA (rocmadeira@gmail.com) on 2015-11-24T18:30:54Z No. of bitstreams: 1 TEXTO DISSERTAÇÃO VFINAL1.pdf: 972383 bytes, checksum: 74fc038f85815d0c99a29b23297a3857 (MD5) / Approved for entry into archive by Janete de Oliveira Feitosa (janete.feitosa@fgv.br) on 2015-12-09T18:36:09Z (GMT) No. of bitstreams: 1 TEXTO DISSERTAÇÃO VFINAL1.pdf: 972383 bytes, checksum: 74fc038f85815d0c99a29b23297a3857 (MD5) / Approved for entry into archive by Maria Almeida (maria.socorro@fgv.br) on 2015-12-11T11:20:29Z (GMT) No. of bitstreams: 1 TEXTO DISSERTAÇÃO VFINAL1.pdf: 972383 bytes, checksum: 74fc038f85815d0c99a29b23297a3857 (MD5) / Made available in DSpace on 2015-12-11T11:20:42Z (GMT). No. of bitstreams: 1 TEXTO DISSERTAÇÃO VFINAL1.pdf: 972383 bytes, checksum: 74fc038f85815d0c99a29b23297a3857 (MD5) Previous issue date: 2015-09-29 / A implantação dos sistemas de notas fiscais eletrônicas proporcionou uma grande quantidade de dados para as administrações tributárias. Analisar esses dados e extrair informações importantes é um desafio. Esse trabalho buscou, por meio de técnicas de análise de dados e mineração de textos, identificar, a partir da descrição dos serviços prestados, notas emitidas incorretamente a fim de respaldar um melhor planejamento de fiscalizações. / The implementation of electronic invoices systems provided a large amount of data for tax administrations. Analyze this data and extract important information is a challenge. This study aimed, through data analysis and text mining techniques, identify, from description of services, invoices incorrectly issued to endorse better planning of inspections.
15

Metodologia para mapeamento de informações não estruturadas descritas em laudos médicos para uma representação atributo-valor / A methodology for mapping non-structured medical findings to the attribute-value table format

Daniel de Faveri Honorato 29 April 2008 (has links)
Devido à facilidade com que informações biomédicas em língua natural são registras e armazenadas no formato digital, a recuperação de informações a partir de registros de pacientes nesse formato não estruturado apresenta diversos problemas a serem solucionados. Assim, a extração de informações estruturadas (por exemplo, no formato atributo-valor) a partir de registros não estruturados é um importante problema de pesquisa. Além disso, a representação de registros médicos não estruturados no formato atributo-valor, permite a aplicação de uma grande variedade de métodos de extração de padrões. Para mapear registros médicos não estruturados no formato atributo-valor, propomos uma metodologia que pode ser utilizada para automaticamente (ou semi-automaticamente, com a ajuda de um especialista do domínio) mapear informações médicas de interesse armazenadas nos registros médicos e descritas em linguagem natural em um formato estruturado. Essa metodologia foi implementada em um sistema computacional chamado TP-DISCOVER, o qual gera uma tabela no formato atributo-valor a partir de um conjunto de registros de pacientes (documentos). De modo a identificar entidades importantes no conjunto de documentos, assim como relacionamentos significantes entre essas entidades, propomos uma abordagem de extração de terminologia híbrida (lingüística/estatística) a qual seleciona palavras e frases que aparecem com freqüência acima de um dado limiar por meio da aplicação de medidas estatísticas. A idéia geral dessa abordagem híbrida de extração de terminologia é que documentos especializados são caracterizados por repetir o uso de certas unidades léxicas ou construções morfo-sintáticas. Nosso objetivo é reduzir o esforço despendido na modelagem manual por meio da observação de regularidades no texto e o mapeamento dessas regularidades como nomes de atributos na representação atributo-valor. A metodologia proposta foi avaliada realizando a estruturação automática de uma coleção de 6000 documentos com informações de resultados de exames de Endoscopia Digestiva Alta descritos em língua natural. Os resultados experimentais, os quais podem ser considerados os piores resultados, uma vez que esses resultados poderiam ser muito melhores caso a metodologia for utilizada semi-automaticamente junto com um especialista do domínio, mostram que a metodologia proposta é adequada e permite reduzir o tempo usado pelo especialista para analisar grande quantidade de registros médicos / The information retrieval from text stored in computer-based patient records is an important open-ended research problem, as the ease in which biomedical information recorded and stored in digital form grows. Thus, means to extract structured information (for example, in the so-called attribute-value format) from free-text records is an important research endeavor. Furthermore, by representing the free-text records in the attribute-value format, available pattern extraction methods can be directly applied. To map free-text medical records into the attribute-value format, we propose a methodology that can be used to automatically (or semi-automatically, with the help of a medical expert) map the important medical information stored in patient records which are described in natural language into an structured format. This methodology has been implemented in a computational system called TP-DISCOVER, which generates a database in the attribute-value format from a set of patient records (documents). In order to identify important entities in the set of documents, as well as significant relations among these entities, we propose a hybrid linguistic/statistical terminology extraction approach which filters out words and phrases that appear with a frequency higher than a given threshold by applying statistical measures. The underlying assumption of this hybrid approach to terminology extraction is that specialized documents are characterized by repeated use of certain lexical units or morpho-syntactic constructions. Our goal is to reduce the effort spent in manual modelling by observing regularities in the texts and by mapping them into suitable attribute names in the attribute-value representation format. The proposed methodology was evaluated to automatically structure a collection of 6000 documents which contains High Digestive Endoscopies exams´ results described in natural language. The experimental results, all of which can be considered lower bound results as they would greatly improve in case the methodology is applied semi-automatically together with a medical expert, show that the proposed methodology is suitable to reduce the medical expert workload in analysing large amounts of medical records
16

Patentes e inovação frugal em uma perspectiva contributiva / Patents and frugal innovation in a contributory perspective

Mazieri, Marcos Rogério 02 December 2016 (has links)
Submitted by Nadir Basilio (nadirsb@uninove.br) on 2017-04-05T19:21:13Z No. of bitstreams: 1 Marcos Rogerio Mazieri.pdf: 6159434 bytes, checksum: 3633a0169bccd42f89d3337015eb9f0e (MD5) / Made available in DSpace on 2017-04-05T19:21:13Z (GMT). No. of bitstreams: 1 Marcos Rogerio Mazieri.pdf: 6159434 bytes, checksum: 3633a0169bccd42f89d3337015eb9f0e (MD5) Previous issue date: 2016-12-02 / This current research contributes to the studies on innovation, by investigating one of its possible faces: the innovations that are develop with almost no resources, called, frugal innovation. The current research brings together conceptual, theoretical and practical aspects of Frugal Innovation, seeking to obtain enough elements to systematize the discussion of the use of patents in this context. From a management point of view, observing the conceptual, theoretical and practical aspects of Frugal Innovation carried out in environments of intense restrictions, whether natural or financial resources, seems to facilitate reflection on the use of resources, as discovered in this research. These discoveries also favor the construction of more effective structured innovation processes. These processes can contribute as a structuring guideline for the construction of new business models, processes, products, services, organizational arrangements and marketing methods. It is possible, for example, to enter companies in emerging and underdeveloped countries or, on the other hand, the valorization of products developed by modest communities or the improvement of living conditions in regions with severe resource constraints. Therefore, research encompasses intrinsic social responsibility. Using mixed methods, especially qualitative for the inductive interpretation of results, quantitative analysis and text mining techniques to carry out the multivariate analysis of the texts segments that form the patent abstracts, eleven propositions were discussing and corroborated. In addition to the methodological contributions, such as the full text analysis, it was concluding that Frugal Innovation is not a type of innovation but a response to an observable restrictive context and, therefore, can coexist with incremental, architectural, modular and radical innovations. The theoretical contributions go beyond the definition of Frugal Innovation, including the definition of semantic classes in patent contexts, demonstrating that patents can contribute to Frugal Innovation and offer some directions on how to make this contribution (Patents-Frugal Innovation) more effective. / Essa atual pesquisa contribui com os estudos sobre a inovação, por investigar uma de suas possíveis faces: as inovações que são desenvolvidas quase sem recursos, denominadas, inovação frugal. A pesquisa atual reúne aspectos conceituais, teóricos e práticos da Inovação Frugal, buscando obter elementos suficientes para sistematizar a discussão do uso das patentes nesse contexto. Do ponto de vista gerencial, observar a face conceitual, teórica e prática da Inovação Frugal realizada em ambientes de grandes restrições, sejam de recursos naturais ou financeiros, parece facilitar a reflexão sobre o uso de recursos, conforme descoberto nessa pesquisa. Tais descobertas favorecem ainda a construção de processos de Inovação estruturada mais eficazes que podem contribuir como diretriz estruturante para a construção de novos modelos de negócios, processos, produtos, serviços, arranjos organizacionais e métodos de marketing, possibilitando, por exemplo, a entrada de empresas em países emergentes e subdesenvolvidos ou por outro lado, a valorização de produtos desenvolvidos por comunidades modestas ou a melhoria das condições de vida de regiões com restrições severas de recursos. A pesquisa abarca, portanto, resposanbilidade social intrínseca. Usando métodos mistos, especialmente qualitativos para a interpretação indutiva dos resultados, análise quantitativa e técnicas de text mining para realizar a análise multivariada dos segmentos de textos que formam os abstracts das patentes, onze proposições foram discutidas e corroboradas. Além das contribuições metodológicas, como a análise de full text, concluiu-se que a Inovação Frugal não é um tipo de inovação e sim uma resposta a um contexto restritivo observável e que, portanto, pode coexistir com inovações incrementais, arquiteturais, modulares e radicais. As contribuições teóricas avançam além da definição da Inovação Frugal, incluindo a definição das classes semânticas em contextos de patentes, demonstrando que as patentes podem contribuir com a Inovação Frugal e oferecendo algumas direções de como fazer essa contribuição (Patentes-Inovação Frugal) mais efetiva.
17

Extração de tópicos baseado em agrupamento de regras de associação / Topic extraction based on association rule clustering

Fabiano Fernandes dos Santos 29 May 2015 (has links)
Uma representação estruturada dos documentos em um formato apropriado para a obtenção automática de conhecimento, sem que haja perda de informações relevantes em relação ao formato originalmente não-estruturado, é um dos passos mais importantes da mineração de textos, pois a qualidade dos resultados obtidos com as abordagens automáticas para obtenção de conhecimento de textos estão fortemente relacionados à qualidade dos atributos utilizados para representar a coleção de documentos. O Modelo de Espaço de Vetores (MEV) é um modelo tradicional para obter uma representação estruturada dos documentos. Neste modelo, cada documento é representado por um vetor de pesos correspondentes aos atributos do texto. O modelo bag-of-words é a abordagem de MEV mais utilizada devido a sua simplicidade e aplicabilidade. Entretanto, o modelo bag-of-words não trata a dependência entre termos e possui alta dimensionalidade. Diversos modelos para representação dos documentos foram propostos na literatura visando capturar a informação de relação entre termos, destacando-se os modelos baseados em frases ou termos compostos, o Modelo de Espaço de Vetores Generalizado (MEVG) e suas extensões, modelos de tópicos não-probabilísticos, como o Latent Semantic Analysis (LSA) ou o Non-negative Matrix Factorization (NMF), e modelos de tópicos probabilísticos, como o Latent Dirichlet Allocation (LDA) e suas extensões. A representação baseada em modelos de tópicos é uma das abordagens mais interessantes uma vez que elas fornece uma estrutura que descreve a coleção de documentos em uma forma que revela sua estrutura interna e as suas inter-relações. As abordagens de extração de tópicos também fornecem uma estratégia de redução da dimensionalidade visando a construção de novas dimensões que representam os principais tópicos ou assuntos identificados na coleção de documentos. Entretanto, a extração é eficiente de informações sobre as relações entre os termos para construção da representação de documentos ainda é um grande desafio de pesquisa. Os modelos para representação de documentos que exploram a correlação entre termos normalmente enfrentam um grande desafio para manter um bom equilíbrio entre (i) a quantidade de dimensões obtidas, (ii) o esforço computacional e (iii) a interpretabilidade das novas dimensões obtidas. Assim,é proposto neste trabalho o modelo para representação de documentos Latent Association Rule Cluster based Model (LARCM). Este é um modelo de extração de tópicos não-probabilístico que explora o agrupamento de regras de associação para construir uma representação da coleção de documentos com dimensionalidade reduzida tal que as novas dimensões são extraídas a partir das informações sobre as relações entre os termos. No modelo proposto, as regras de associação são extraídas para cada documento para obter termos correlacionados que formam expressões multi-palavras. Essas relações entre os termos formam o contexto local da relação entre termos. Em seguida, aplica-se um processo de agrupamento em todas as regras de associação para formar o contexto geral das relações entre os termos, e cada grupo de regras de associação obtido formará um tópico, ou seja, uma dimensão da representação. Também é proposto neste trabalho uma metodologia de avaliação que permite selecionar modelos que maximizam tanto os resultados na tarefa de classificação de textos quanto os resultados de interpretabilidade dos tópicos obtidos. O modelo LARCM foi comparado com o modelo LDA tradicional e o modelo LDA utilizando uma representação que inclui termos compostos (bag-of-related-words). Os resultados dos experimentos indicam que o modelo LARCM produz uma representação para os documentos que contribui significativamente para a melhora dos resultados na tarefa de classificação de textos, mantendo também uma boa interpretabilidade dos tópicos obtidos. O modelo LARCM também apresentou ótimo desempenho quando utilizado para extração de informação de contexto para aplicação em sistemas de recomendação sensíveis ao contexto. / A structured representation of documents in an appropriate format for the automatic knowledge extraction without loss of relevant information is one of the most important steps of text mining, since the quality of the results obtained with automatic approaches for the text knowledge extraction is strongly related to the quality of the selected attributes to represent the collection of documents. The Vector Space model (VSM) is a traditional structured representation of documents. In this model, each document is represented as a vector of weights that corresponds to the features of the document. The bag-of-words model is the most popular VSM approach because of its simplicity and general applicability. However, the bag-of-words model does not include dependencies of the terms and has a high dimensionality. Several models for document representation have been proposed in the literature in order to capture the dependence among the terms, especially models based on phrases or compound terms, the Generalized Vector Space Model (GVSM) and their extensions, non-probabilistic topic models as Latent Semantic Analysis (LSA) or Non-negative Matrix Factorization (NMF) and still probabilistic topic models as the Latent Dirichlet Allocation (LDA) and their extensions. The topic model representation is one of the most interesting approaches since it provides a structure that describes the collection of documents in a way that reveals their internal structure and their interrelationships. Also, this approach provides a dimensionality reduction strategy aiming to built new dimensions that represent the main topics or ideas of the document collection. However, the efficient extraction of information about the relations of terms for document representation is still a major research challenge nowadays. The document representation models that explore correlated terms usually face a great challenge of keeping a good balance among the (i) number of extracted features, (ii) the computational performance and (iii) the interpretability of new features. In this way, we proposed the Latent Association Rule Cluster based Model (LARCM). The LARCM is a non-probabilistic topic model that explores association rule clustering to build a document representation with low dimensionality in a way that each dimension is composed by information about the relations among the terms. In the proposed approach, the association rules are built for each document to extract the correlated terms that will compose the multi-word expressions. These relations among the terms are the local context of relations. Then, a clustering process is applied for all association rules to discover the general context of the relations, and each obtained cluster is an extracted topic or a dimension of the new document representation. This work also proposes in this work an evaluation methodology to select topic models that maximize the results in the text classification task as much as the interpretability of the obtained topics. The LARCM model was compared against both the traditional LDA model and the LDA model using a document representation that includes multi-word expressions (bag-of-related-words). The experimental results indicate that LARCM provides an document representation that improves the results in the text classification task and even retains a good interpretability of the extract topics. The LARCM model also achieved great results as a method to extract contextual information for context-aware recommender systems.
18

Organização flexível de documentos / Flexible organization of documents

Tatiane Nogueira Rios 25 March 2013 (has links)
Diversos métodos têm sido desenvolvidos para a organização da crescente quantidade de documentos textuais. Esses métodos frequentemente fazem uso de algoritmos de agrupamento para organizar documentos que referem-se a um mesmo assunto em um mesmo grupo, supondo que conteúdos de documentos de um mesmo grupo são similares. Porém, existe a possibilidade de que documentos pertencentes a grupos distintos também apresentem características semelhantes. Considerando esta situação, há a necessidade de desenvolver métodos que possibilitem a organização flexível de documentos, ou seja, métodos que possibilitem que documentos sejam organizados em diferentes grupos com diferentes graus de compatibilidade. O agrupamento fuzzy de documentos textuais apresenta-se como uma técnica adequada para este tipo de organização, uma vez que algoritmos de agrupamento fuzzy consideram que um mesmo documento pode ser compatível com mais de um grupo. Embora tem-se desenvolvido algoritmos de agrupamento fuzzy que possibilitam a organização flexível de documentos, tal organização é avaliada em termos do desempenho do agrupamento de documentos. No entanto, considerando que grupos de documentos devem possuir descritores que identifiquem adequadamente os tópicos representados pelos mesmos, de maneira geral os descritores de grupos tem sido extraídos utilizando alguma heurística sobre um conjunto pequeno de documentos, realizando assim, uma avaliação simples sobre o significado dos grupos extraídos. No entanto, uma apropriada extração e avaliação de descritores de grupos é importante porque os mesmos são termos representantes da coleção que identificam os tópicos abordados nos documentos. Portanto, em aplicações em que o agrupamento fuzzy é utilizado para a organização flexível de documentos, uma descrição apropriada dos grupos obtidos é tão importante quanto um bom agrupamento, uma vez que, neste tipo de agrupamento, um mesmo descritor pode indicar o conteúdo de mais de um grupo. Essa necessidade motivou esta tese, cujo objetivo foi investigar e desenvolver métodos para a extração de descritores de grupos fuzzy para a organização flexível de documentos. Para cumprir esse objetivo desenvolveu se: i) o método SoftO-FDCL (Soft Organization - Fuzzy Description Comes Last ), pelo qual descritores de grupos fuzzy at são extraídos após o processo de agrupamento fuzzy, visando identicar tópicos da organização flexível de documentos independentemente do algoritmo de agrupamento fuzzy utilizado; ii) o método SoftO-wFDCL ( Soft Organization - weighted Fuzzy Description Comes Last ), pelo qual descritores de grupos fuzzy at também são extraídos após o processo de agrupamento fuzzy utilizando o grau de pertinência dos documentos em cada grupo, obtidos do agrupamento fuzzy, como fator de ponderação dos termos candidatos a descritores; iii) o método HSoftO-FDCL (Hierarchical Soft Organization - Fuzzy Description Comes Last ), pelo qual descritores de grupos fuzzy hierárquicos são extraídos após o processo de agrupamento hierárquico fuzzy, identificando tópicos da organização hierárquica flexível de documentos. Adicionalmente, apresenta-se nesta tese uma aplicação do método SoftO-FDCL no contexto do programa de educação médica continuada canadense, reforçando a utilidade e aplicabilidade da organização flexível de documentos / Several methods have been developed to organize the growing number of textual documents. Such methods frequently use clustering algorithms to organize documents with similar topics into clusters. However, there are situations when documents of dffierent clusters can also have similar characteristics. In order to overcome this drawback, it is necessary to develop methods that permit a soft document organization, i.e., clustering documents into different clusters according to different compatibility degrees. Among the techniques that we can use to develop methods in this sense, we highlight fuzzy clustering algorithms (FCA). By using FCA, one of the most important steps is the evaluation of the yield organization, which is performed considering that all analyzed topics are adequately identified by cluster descriptors. In general, cluster descriptors are extracted using some heuristic over a small number of documents. The adequate extraction and evaluation of cluster descriptors is important because they are terms that represent the collection and identify the topics of the documents. Therefore, an adequate description of the obtained clusters is as important as a good clustering, since the same descriptor might identify one or more clusters. Hence, the development of methods to extract descriptors from fuzzy clusters obtained for soft organization of documents motivated this thesis. Aiming at investigating such methods, we developed: i) the SoftO-FDCL (Soft Organization - Fuzzy Description Comes Last) method, in which descriptors of fuzzy clusters are extracted after clustering documents, identifying topics regardless the adopted fuzzy clustering algorithm; ii) the SoftO-wFDCL (Soft Organization - weighted Fuzzy Description Comes Last) method, in which descriptors of fuzzy clusters are also extracted after the fuzzy clustering process using the membership degrees of the documents as a weighted factor for the candidate descriptors; iii) the HSoftO-FDCL (Hierarchical Soft Organization - Fuzzy Description Comes Last) method, in which descriptors of hierarchical fuzzy clusters are extracted after the hierarchical fuzzy clustering process, identifying topics by means of a soft hierarchical organization of documents. Besides presenting these new methods, this thesis also discusses the application of the SoftO-FDCL method on documents produced by the Canadian continuing medical education program, presenting the utility and applicability of the soft organization of documents in real-world scenario
19

Aprendizado de máquina parcialmente supervisionado multidescrição para realimentação de relevância em recuperação de informação na WEB / Partially supervised multi-view machine learning for relevance feedback in WEB information retrieval

Matheus Victor Brum Soares 28 May 2009 (has links)
Atualmente, o meio mais comum de busca de informações é a WEB. Assim, é importante procurar métodos eficientes para recuperar essa informação. As máquinas de busca na WEB usualmente utilizam palavras-chaves para expressar uma busca. Porém, não é trivial caracterizar a informação desejada. Usuários diferentes com necessidades diferentes podem estar interessados em informações relacionadas, mas distintas, ao realizar a mesma busca. O processo de realimentação de relevância torna possível a participação ativa do usuário no processo de busca. A idéia geral desse processo consiste em, após o usuário realizar uma busca na WEB permitir que indique, dentre os sites encontrados, quais deles considera relevantes e não relevantes. A opinião do usuário pode então ser considerada para reordenar os dados, de forma que os sites relevantes para o usuário sejam retornados mais facilmente. Nesse contexto, e considerando que, na grande maioria dos casos, uma consulta retorna um número muito grande de sites WEB que a satisfazem, das quais o usuário é responsável por indicar um pequeno número de sites relevantes e não relevantes, tem-se o cenário ideal para utilizar aprendizado parcialmente supervisionado, pois essa classe de algoritmos de aprendizado requer um número pequeno de exemplos rotulados e um grande número de exemplos não-rotulados. Assim, partindo da hipótese que a utilização de aprendizado parcialmente supervisionado é apropriada para induzir um classificador que pode ser utilizado como um filtro de realimentação de relevância para buscas na WEB, o objetivo deste trabalho consiste em explorar algoritmos de aprendizado parcialmente supervisionado, mais especificamente, aqueles que utilizam multidescrição de dados, para auxiliar na recuperação de sites na WEB. Para avaliar esta hipótese foi projetada e desenvolvida uma ferramenta denominada C-SEARCH que realiza esta reordenação dos sites a partir da indicação do usuário. Experimentos mostram que, em casos que buscas genéricas, que o resultado possui um bom diferencial entre sites relevantes e irrelevantes, o sistema consegue obter melhores resultados para o usuário / As nowadays the WEB is the most common source of information, it is very important to find reliable and efficient methods to retrieve this information. However, the WEB is a highly volatile and heterogeneous information source, thus keyword based querying may not be the best approach when few information is given. This is due to the fact that different users with different needs may want distinct information, although related to the same keyword query. The process of relevance feedback makes it possible for the user to interact actively with the search engine. The main idea is that after performing an initial search in the WEB, the process enables the user to indicate, among the retrieved sites, a small number of the ones considered relevant or irrelevant according with his/her required information. The users preferences can then be used to rearrange sites returned in the initial search, so that relevant sites are ranked first. As in most cases a search returns a large amount of WEB sites which fits the keyword query, this is an ideal situation to use partially supervised machine learning algorithms. This kind of learning algorithms require a small number of labeled examples, and a large number of unlabeled examples. Thus, based on the assumption that the use of partially supervised learning is appropriate to induce a classifier that can be used as a filter for relevance feedback in WEB information retrieval, the aim of this work is to explore the use of a partially supervised machine learning algorithm, more specifically, one that uses multi-description data, in order to assist the WEB search. To this end, a computational tool called C-SEARCH, which performs the reordering of the searched results using the users feedback, has been implemented. Experimental results show that in cases where the keyword query is generic and there is a clear distinction between relevant and irrelevant sites, which is recognized by the user, the system can achieve good results
20

Aspectos semânticos na representação de textos para classificação automática / Semantic aspects in the representation of texts for automatic classification

Roberta Akemi Sinoara 24 May 2018 (has links)
Dada a grande quantidade e diversidade de dados textuais sendo criados diariamente, as aplicações do processo de Mineração de Textos são inúmeras e variadas. Nesse processo, a qualidade da solução final depende, em parte, do modelo de representação de textos adotado. Por se tratar de textos em língua natural, relações sintáticas e semânticas influenciam o seu significado. No entanto, modelos tradicionais de representação de textos se limitam às palavras, não sendo possível diferenciar documentos que possuem o mesmo vocabulário, mas que apresentam visões diferentes sobre um mesmo assunto. Nesse contexto, este trabalho foi motivado pela diversidade das aplicações da tarefa de classificação automática de textos, pelo potencial das representações no modelo espaço-vetorial e pela lacuna referente ao tratamento da semântica inerente aos dados em língua natural. O seu desenvolvimento teve o propósito geral de avançar as pesquisas da área de Mineração de Textos em relação à incorporação de aspectos semânticos na representação de coleções de documentos. Um mapeamento sistemático da literatura da área foi realizado e os problemas de classificação foram categorizados em relação à complexidade semântica envolvida. Aspectos semânticos foram abordados com a proposta, bem como o desenvolvimento e a avaliação de sete modelos de representação de textos: (i) gBoED, modelo que incorpora a semântica obtida por meio de conhecimento do domínio; (ii) Uni-based, modelo que incorpora a semântica por meio da desambiguação lexical de sentidos e hiperônimos de conceitos; (iii) SR-based Terms e SR-based Sentences, modelos que incorporam a semântica por meio de anotações de papéis semânticos; (iv) NASARIdocs, Babel2Vec e NASARI+Babel2Vec, modelos que incorporam a semântica por meio de desambiguação lexical de sentidos e embeddings de palavras e conceitos. Representações de coleções de documentos geradas com os modelos propostos e outros da literatura foram analisadas e avaliadas na classificação automática de textos, considerando datasets de diferentes níveis de complexidade semântica. As propostas gBoED, Uni-based, SR-based Terms e SR-based Sentences apresentam atributos mais expressivos e possibilitam uma melhor interpretação da representação dos documentos. Já as propostas NASARIdocs, Babel2Vec e NASARI+Babel2Vec incorporam, de maneira latente, a semântica obtida de embeddings geradas a partir de uma grande quantidade de documentos externos. Essa propriedade tem um impacto positivo na performance de classificação. / Text Mining applications are numerous and varied since a huge amount of textual data are created daily. The quality of the final solution of a Text Mining process depends, among other factors, on the adopted text representation model. Despite the fact that syntactic and semantic relations influence natural language meaning, traditional text representation models are limited to words. The use of such models does not allow the differentiation of documents that use the same vocabulary but present different ideas about the same subject. The motivation of this work relies on the diversity of text classification applications, the potential of vector space model representations and the challenge of dealing with text semantics. Having the general purpose of advance the field of semantic representation of documents, we first conducted a systematic mapping study of semantics-concerned Text Mining studies and we categorized classification problems according to their semantic complexity. Then, we approached semantic aspects of texts through the proposal, analysis, and evaluation of seven text representation models: (i) gBoED, which incorporates text semantics by the use of domain expressions; (ii) Uni-based, which takes advantage of word sense disambiguation and hypernym relations; (iii) SR-based Terms and SR-based Sentences, which make use of semantic role labels; (iv) NASARIdocs, Babel2Vec and NASARI+Babel2Vec, which take advantage of word sense disambiguation and embeddings of words and senses.We analyzed the expressiveness and interpretability of the proposed text representation models and evaluated their classification performance against different literature models. While the proposed models gBoED, Uni-based, SR-based Terms and SR-based Sentences have improved expressiveness, the proposals NASARIdocs, Babel2Vec and NASARI+Babel2Vec are latently enriched by the embeddings semantics, obtained from the large training corpus. This property has a positive impact on text classification performance.

Page generated in 0.0393 seconds