• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 31
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Teoretisk beräkning av bränsleförångningshastigheten vid pölbränder : En analys av ekvationen 𝑚̇ " = 𝑚̇ ∞ " (1 − 𝑒 −𝑘𝛽𝐷)

Klingefjord, Ylva January 2020 (has links)
Brandförlopp och värmetransport vid pölbränder har länge skapat intresse och studerats. Pölbränder innebär att en bränslepöl fattar eld. En risk som förekommer främst industriellt och där pölen ofta utgörs av bränslespill eller av en öppen bränsletank. Bränsleförångningshastigheten är ett begrepp som beskriver hur mycket massa som förångas per areaenhet och tidsenhet, vanligtvis kvadratmeter [m2] och sekund [s]. Bränsleförångningshastigheten för en pölbrand uttrycks vanligtvis enligt ekvationen 𝑚̇ " =𝑚̇∞" (1 − 𝑒−𝑘𝛽𝐷) , som i denna studie analyseras och tillämpas mot olika referensers experimentella resultat. Värdet för bränslekonstanterna 𝑘𝛽 och 𝑚̇∞" togs från olika referenser och jämfördes mot varandra. Ekvationen analyserades för följande bränslen: bensin, diesel, heptan, hexan och toluen. Även alkoholerna etanol och metanol behandlas i rapporten, men då ekvationen traditionellt sett inte tillämpas för dessa två ämnen fokuserades arbetet till att anpassa nya bränslekonstanter för etanol och metanol. Anpassningen genomfördes utifrån en sammanställning av olika referensers experimentella resultat. Resultatet visade att teoretiska beräkningar enligt ekvationen överlag stämmer bra överens med de experimentella värdena. Hexan och bensin var de ämnen där värdena överensstämde bäst, med en felprocent på 11 % för respektive bränsle. För toluen och diesel blev felet störst, med felprocenten 16 %. Resultatet för toluen och diesel anses dock osäkert då enbart tre olika referensexperiment användes samt att de teoretiska beräkningarna för toluen enbart genomfördes utifrån bränslekonstanter från en referens. De experimentella värdena för metanol var svåra att anpassa utifrån ekvationen och förhållandet mellan ekvationen och bränslet metanol bör utredas vidare. Värden för konstanterna föreslogs utifrån resultatet till 𝑘𝛽=1,09 m-1 och 𝑚̇∞" = 0,028 kg·s-1·m-2. För etanol anpassades bränslekonstanterna till 𝑘𝛽= 2,20 m-1 samt 𝑚̇∞" = 0,027 kg·s-1·m-2. Då analysen för etanol enbart utgår från fyra referenser bör vidare studier genomföras för att ge en högre trovärdighet. Felprocenten vid jämförelse mellan de experimentella värdena och de beräknade värdena utifrån de föreslagna konstanterna blev 19 % för både metanol och etanol.
2

Paramètres spectraux à LPC Paramètres Mapping : approches multi-linéaires et GMM (appliqué aux voyelles françaises) / Spectral Parameters to Cued Speech Parameters Mapping : Multi-linear and GMM approaches (applied to French vowels)

Ming, Zuheng 24 June 2013 (has links)
Le langage parlé complété (LPC) est un système de communication visuel qui utilise des formes de main placés dans différentes positions près du visage, en combinaison avec le discours de la lecture labiale naturel, pour améliorer la perception de la parole à partir de l'entrée visuelle pour les personnes sourdes. Cependant l'un des défis importants est la question de la communication de la parole entre les personnes normo-entendant qui ne pratiquent pas LPC mais produisent discours acoustique et les personnes sourdes qui utilisent la lecture labiale complété par code LPC pour la perception de la parole sans audition résiduelle. Dans notre travail, nous appliquons la méthode de régression linéaire multiple (MLR) et modèle gaussien de mélange (GMM) approche pour mapper des paramètres spectraux acoustiques à la position de la main dans LPC et la forme de la lèvre d’accompagnement. Nous donc contribué à la mise au point d'un système de traduction automatique dans le cadre de la synthèse de la parole visuelle.Cela prouve que l'approche MLR est bonne pour l'estimation des paramètres pour les lèvres à partir des paramètres spectraux car il y a forte corrélation linéaire entre les paramètres des lèvres et des paramètres spectraux. Cependant, la performance de l'approche MLR pour estimer la position de la main est faible car il n'y a pas de relation entre les positions de la main et des paramètres spectraux. En introduisant un espace intermédiaire, il s'avère que la structure de topologie similaire est la clé de la MLR. Afin de libérer de la contrainte linéaire de l'approche MLR, nous appliquons la méthode de cartographie basée sur GMM qui possède à la fois les propriétés de classification et de régression. Les paramètres de GMM sont estimés par les méthodes de formation supervisées, non supervisées et semi- supervisés séparément dans la vue de la théorie de l'apprentissage de la machine. La méthode de formation supervisée montre une grande efficacité et une bonne robustesse. Le Minimum Mean Square Error (MMSE) et Maximum A Posteriori Probabilité (MAP) sont utilisés comme critères de régression séparément dans l'approche de la cartographie basée sur GMM. Cela prouve que l'approche MLR est un cas particulier de l'approche de GMM lorsque le nombre de gaussiennes est égal à un. Ainsi, l'approche de la cartographie sur GMM peut améliorer la performance significative en comparaison avec le MLR en augmentant le nombre de gaussiennes. Enfin, les différentes approches de cartographie utilisées dans ce travail sont comparées dans une transition continue. Il montre que l'approche sur GMM peut effectuer bien grâce à la propriété de classification lorsque les données source et cible n'a pas de " relation" comme dans le cas de l'estimation de la position de la main, et il peut également améliorer les performances par la propriété de régression local lorsque la source et les données cible a forte corrélation comme dans le cas du paramètre de lèvre estimation. En outre, une prédiction directe de la géométrie des lèvres comporte de l'image naturelle de la bouche région d'intérêt (ROI) sur la base de la 2D transformée en cosinus discrète (DCT) combinée à une analyse en composante principale (ACP) est proposé. Les résultats montrent la possibilité d'estimer les caractéristiques géométriques de la lèvre avec une bonne précision en utilisant un ensemble réduit de prédicteurs dérivés des coefficients DCT. / Cued Speech (CS) is a visual communication system that uses hand shapes placed in different positions near the face, in combination with the natural speech lip-reading, to enhance speech perception from visual input for deaf people. However one of the important challenges is the question of speech communication between normal hearing people who do not practice CS but produce acoustic speech and deaf people who use lip-reading complemented by CS code for speech perception with no residual audition. In our work, we apply the multi-linear regression approach (MLR) and Gaussian Mixture Model (GMM)-based mapping approach to map acoustic spectral parameters to the hand position in CS and the accompanying lip shape. We hence contributed to the development of automatic translation system in the framework of visual speech synthesis. It proves that the MLR approach is good for estimating the lip parameters from the spectral parameters since there is strong linear correlation between the lip parameters and spectral parameters. However, the performance of MLR approach for estimating the hand position is poor since there is no relationship between the hand positions and spectral parameters. By introducing an intermediate space, it proves that the similar topology structure is the key of the MLR. In order to release the linear constraint of the MLR approach, we apply the GMM-based mapping approach which has both the classification-partition and regression properties. The parameters of GMM are estimated by the supervised, unsupervised and semi-supervised training methods separately in the view of the machine learning theory. The supervised training method shows high efficiency and good robustness. The Minimum Mean Square Error (MMSE) and Maximum A Posteriori Probability (MAP) are used as regression criteria separately in GMM-based mapping approach. It proves that the MLR approach is a special case of GMM-based mapping approach when the number of the Gaussians equals to one. Thus the GMM-based mapping approach can improve the performance significantly in comparison with the MLR by increasing the number of the Gaussians. Finally, a continuous transition achieved by the linear interpolation in the acoustic space is introduced to compare the different mapping approaches used in this work. It shows that the GMM-based mapping approach can perform well thanks to the classification-partitioning property when the source and target data has “no relationship” such as the case of the hand position estimation; and it can also improve the performance by the local regression property when the source and target data has strong correlation such as the case of the lip parameter estimation. Besides, a direct prediction of lip geometry features from the natural image of mouth region-of-interest (ROI) based on the 2D Discrete Cosine Transform (DCT) combined with a Principal Component Analysis (PCA) is proposed. The results show the possibility to estimate the geometric lip features with good accuracy using a reduced set of predictors derived from the DCT coefficients.
3

Modellering och styrning av flis till en sulfatkokare / Modelling and control of wooden chips to a sulphate digester

Ohlsson, Staffan January 2005 (has links)
<p>At the Skoghall pappermill, sulphatepaper pulp is produced in a continuous digester originally from 1969. To be able to maintain a high level of production there is a need for a process with few disturbances. Variations in how well the wooden chips are packed in the digester is one form of disturbance. Today there are no available measurements on how well the chips are packed. Instead this is regarded as being constant. </p><p>The variation in the so called bulk density of the chips is mainly due to variations in the percentage with small dimensions. Chips are classified in relation to their size and one of the smallest classes is referred to as pin chips. These are believed to have a big impact on the bulk density. The amount of pin chips fluctuate more then the other classes, there by causing disturbances. </p><p>The Skoghall pappermill has invested in a ScanChip. This is an instrument that measures the dimensions of the chips optically. ScanChip presents figures on chip quality, including a measurement of the bulk density. However, it has been shown that this measurement is not valid for the Skoghall pappermill. By using data from ScanChip a model that predicts how well the chips are packed has been devised. This value is the bulk density divided by the basic density. The model has proved to yield good results, despite a relatively small amount of data. </p><p>A theoretical value of the amount of produced pulp has been computed based on the revolutions of the production screw that feeds chips into the digester. This value takes in consideration how well the chips are packed. The value has shown great similarities with the empirical measurements that are used today. A simulation during one month has shown that differences in the mixture of chips have effected the measurement of produced pulp with up to 7 ton/h. </p><p>Chips are stored in open pile storages before they are being used in the process of transforming them into pulp. Four screws are used to move chips from the piles to conveyer belts. It has been shown in work done previously, that the movement of the screws contributes to variations in the amount of pin chips measured by ScanChip. </p><p>During the work with this master’s thesis I have found that there are variations in the piles that make it difficult to predict the amount of pin chips accordingly. However by filtering the measurements of pin chips to remove these variations, the results are improved. A new way of controlling the movements of the screws was operational on the 10 of March and this improved the results. </p><p>The direction in which the screws are moving influence the speed of the screws, mainly in the pile with the so called sawmill chips. By changing the amount of chips that each screw puts out, the differences in speed have been reduced. The mixtures found in the two piles are not completely homogenous. There are a greater amount of pin chips in the northern parts compared with the southern parts. This could be an effect of the wind direction, and will still cause variations.</p>
4

Plant Condition Measurement from Spectral Reflectance Data / Växttillståndsmätningar från spektral reflektansdata

Johansson, Peter January 2010 (has links)
<p>The thesis presents an investigation of the potential of measuring plant condition from hyperspectral reflectance data. To do this, some linear methods for embedding the high dimensional hyperspectral data and to perform regression to a plant condition space have been compared. A preprocessing step that aims at normalized illumination intensity in the hyperspectral images has been conducted and some different methods for this purpose have also been compared.A large scale experiment has been conducted where tobacco plants have been grown and treated differently with respect to watering and nutrition. The treatment of the plants has served as ground truth for the plant condition. Four sets of plants have been grown one week apart and the plants have been measured at different ages up to the age of about five weeks. The thesis concludes that there is a relationship between plant treatment and their leaves' spectral reflectance, but the treatment has to be somewhat extreme for enabling a useful treatment approximation from the spectrum. CCA has been the proposed method for calculation of the hyperspectral basis that is used to embed the hyperspectral data to the plant condition (treatment) space. A preprocessing method that uses a weighted normalization of the spectrums for illumination intensity normalization is concluded to be the most powerful of the compared methods.</p>
5

Analysis of the Generation of Auditory Steady-State Cortical Evoked Responses in Guinea Pigs

Briceno, Jose Alejandro 01 January 2008 (has links)
Recent research shows that human auditory steady-state responses (ASSRs) develop a resonance at 40 Hz and the dramatic amplitude increase of the Pb component of the middle latency response (MLR) accounts for the high amplitude of the ASSR at 40 Hz. The first part of this study aimed to investigate the ASSR resonance characteristics as a function of rate in guinea pigs. A study of the grand average of the peak-to-peak and fundamental frequency amplitudes does indeed show a resonance around 40 Hz in guinea pigs. Unlike human ASSRs, this resonance is very broad (26-52 Hz) and flat. The centrally recorded ASSRs are smaller and tend to have resonances at higher rates compared to temporal signals. The second part of the analysis investigated whether the superposition of transient responses can predict the acquired ASSRs at each corresponding rate. This superposition theory is one of two competing theories on the origin of the ASSRs, with the other centering on the induced phase synchronization of brain waves. In order to test the first theory, transient responses were used to create synthetic ASSRs, which were then compared to the acquired ASSRs via correlation coefficient and phasor analysis. For the 40 Hz ASSR, both temporal and central electrode synthesized ASSRs show a correlation coefficient above 0.80. In the comparison at 20 Hz, the correlation coefficient is very high (about 0.9) in the temporal electrode, yet significantly lower (about 0.7) for the central electrode. Furthermore, at 80 Hz, the correlation coefficient is significantly lower in both temporal and central electrodes (about 0.7). At all rates, the correlation coefficients are highest with low jitter sequences. Finally, phasor analysis was also used to test the superposition theory of the generation of the acquired ASSRs at 20, 40, and 80 Hz. Overall, in the temporal recordings at 40 Hz, the superposition of the MLR responses accurately predicted the acquired 40 Hz ASSR as demonstrated by both magnitude and phase analysis. The recordings made in the central electrode only predicted the acquired ASSR in its phases, with significant differences found in magnitude at its main harmonics. Similarly, at 20 and 80 Hz in both temporal and central electrodes, the synthetic ASSRs did not appear to fully predict the acquired ASSRs. Although the phases were successfully predicted, large magnitude variations were observed. As shown by mean prediction error plots, the acquired ASSRs are best predicted by low jitter sequences, followed by low-medium and medium jitter sequences.
6

Plant Condition Measurement from Spectral Reflectance Data / Växttillståndsmätningar från spektral reflektansdata

Johansson, Peter January 2010 (has links)
The thesis presents an investigation of the potential of measuring plant condition from hyperspectral reflectance data. To do this, some linear methods for embedding the high dimensional hyperspectral data and to perform regression to a plant condition space have been compared. A preprocessing step that aims at normalized illumination intensity in the hyperspectral images has been conducted and some different methods for this purpose have also been compared.A large scale experiment has been conducted where tobacco plants have been grown and treated differently with respect to watering and nutrition. The treatment of the plants has served as ground truth for the plant condition. Four sets of plants have been grown one week apart and the plants have been measured at different ages up to the age of about five weeks. The thesis concludes that there is a relationship between plant treatment and their leaves' spectral reflectance, but the treatment has to be somewhat extreme for enabling a useful treatment approximation from the spectrum. CCA has been the proposed method for calculation of the hyperspectral basis that is used to embed the hyperspectral data to the plant condition (treatment) space. A preprocessing method that uses a weighted normalization of the spectrums for illumination intensity normalization is concluded to be the most powerful of the compared methods.
7

Modellering och styrning av flis till en sulfatkokare / Modelling and control of wooden chips to a sulphate digester

Ohlsson, Staffan January 2005 (has links)
At the Skoghall pappermill, sulphatepaper pulp is produced in a continuous digester originally from 1969. To be able to maintain a high level of production there is a need for a process with few disturbances. Variations in how well the wooden chips are packed in the digester is one form of disturbance. Today there are no available measurements on how well the chips are packed. Instead this is regarded as being constant. The variation in the so called bulk density of the chips is mainly due to variations in the percentage with small dimensions. Chips are classified in relation to their size and one of the smallest classes is referred to as pin chips. These are believed to have a big impact on the bulk density. The amount of pin chips fluctuate more then the other classes, there by causing disturbances. The Skoghall pappermill has invested in a ScanChip. This is an instrument that measures the dimensions of the chips optically. ScanChip presents figures on chip quality, including a measurement of the bulk density. However, it has been shown that this measurement is not valid for the Skoghall pappermill. By using data from ScanChip a model that predicts how well the chips are packed has been devised. This value is the bulk density divided by the basic density. The model has proved to yield good results, despite a relatively small amount of data. A theoretical value of the amount of produced pulp has been computed based on the revolutions of the production screw that feeds chips into the digester. This value takes in consideration how well the chips are packed. The value has shown great similarities with the empirical measurements that are used today. A simulation during one month has shown that differences in the mixture of chips have effected the measurement of produced pulp with up to 7 ton/h. Chips are stored in open pile storages before they are being used in the process of transforming them into pulp. Four screws are used to move chips from the piles to conveyer belts. It has been shown in work done previously, that the movement of the screws contributes to variations in the amount of pin chips measured by ScanChip. During the work with this master’s thesis I have found that there are variations in the piles that make it difficult to predict the amount of pin chips accordingly. However by filtering the measurements of pin chips to remove these variations, the results are improved. A new way of controlling the movements of the screws was operational on the 10 of March and this improved the results. The direction in which the screws are moving influence the speed of the screws, mainly in the pile with the so called sawmill chips. By changing the amount of chips that each screw puts out, the differences in speed have been reduced. The mixtures found in the two piles are not completely homogenous. There are a greater amount of pin chips in the northern parts compared with the southern parts. This could be an effect of the wind direction, and will still cause variations.
8

Improved Models for the Potential Energy Functions of the Ground Singlet and Lowest-Lying Triplet States of the Cesium Dimer

Baldwin, Jesse January 2012 (has links)
The Morse/Long Range (MLR) potential has become one of the most reliable and highly used potential energy functions for diatomic molecules. It includes the theoretical long range behaviour that diatomic molecules are known to exhibit as they approach the dissociation limit. Heavy alkali metals with adjacent electronic states often exhibit strong coupling between the spin and orbital angular momentum. The ground state X¹Σg⁺ and the lowest lying triplet state aᶟΣᵤ⁺ of Cs₂ exhibit such coupling effects and as a result, modeling the highest vibrational states of these states is a non-trivial problem. Utilizing scattering length values obtained from published analysis of 60 Feshbach resonances, the correct form of the potential energy function was determined. Moreover, the scattering length values were used to determine the correct leading dispersion coefficient that describes the true form of the long-range potential energy functions. All previous attempts to determine global potential energy functions for these states have considered only the optical spectroscopic data. This is the first ever effort attempting to use scattering lengths determined from cold atom collision experiments in a combined analysis with conventional spectroscopic data.
9

Incorporation of therapeutic effect of daylight in the architectural design of in-patient rooms to reduce patient length of stay (LoS) in hospitals

Joarder, Md. Ashikur Rahman January 2011 (has links)
The biological need for lighting by an individual differs from the merely visual purpose, such as viewing objects and doing work or movement. Lack of adequate daylight for biological stimulation can lead to health problems, for e.g. imbalanced circadian rhythm. The importance of daylight is vital for hospital patients who are mostly physically and/or psychologically stressed. As, many patients stay indoors for 24 hours, they might be vulnerable to the lack of daylight which is necessary for health reasons. Hence, for hospital patients, daylight can be a strong therapeutic environmental design element to ensure good health and accelerate clinical recovery. The complex relationship between daylight environment and individuals responses are not fully understood. Controversy results that are debated by the previous researchers, has made the implementation of daylighting strategies in the architectural design of hospital in-patient rooms critical, mainly for therapeutic purpose. Strong evidence needs to be established that can build confidence to both architects and policy makers to use daylight for therapeutic purpose and integration of therapeutic effect of daylight to in-patient room architecture is necessary as well. This thesis provides information to architects (with examples) for incorporation of therapeutic effect of daylight in the design of in-patient rooms to reduce patient length of stay (LoS) in hospitals. A triangulation research method was applied in this work, where theories were developed qualitatively and tested quantitatively. Literature review was carried out to establish the potential effect of daylight on patient health. Retrospective field investigations were conducted to establish the quantitative relationship between daylight intensity and patient LoS inside in-patient rooms by developing Multiple Linear Regression (MLR) models under a general hospital environment. Using the daylighting goal to enhance therapeutic benefit for hospital patients, referred from literature and verified from field investigation data, a daylight design concept (sky window configurations) was developed and evaluated by prospective simulation study, and found better compared to traditional standard hospital window configurations, in order to enhance therapeutic benefit for hospital patients. A dynamic annual Climate-Based Daylight Modelling (CBDM) method that uses RADIANCE (backward) raytracer combined with a daylight coefficient approach considering Perez all weather sky luminance model (i.e. DAYSIM), was used for simulation analysis. This thesis develops strategies for architects to incorporate therapeutic effect of daylight in the architectural design of hospital in-patient rooms, including guidelines to support architectural decisions in case of conflicting situations, and to identify the range of daylight intensities within which patient LoS is expected to be reduced. The strategies also consider the ultraviolet radiation (UVR) protections and discuss the challenges of climate change for daylight researchers for the incorporation of therapeutic effect of daylight in the design of hospital in-patient rooms. The thesis provides a contribution to knowledge by establishing strong evidence of quantitative relationship between daylight and LoS, and by presenting new architectural forms for hospital in-patient room design as one of the possible ways to incorporate therapeutic effect of daylight in the design of hospital in-patient rooms effectively. It is expected that the research will encourage and help architects and policy makers to incorporate therapeutic effect of daylight in the design of hospital in-patient rooms, efficiently.
10

Improved Models for the Potential Energy Functions of the Ground Singlet and Lowest-Lying Triplet States of the Cesium Dimer

Baldwin, Jesse January 2012 (has links)
The Morse/Long Range (MLR) potential has become one of the most reliable and highly used potential energy functions for diatomic molecules. It includes the theoretical long range behaviour that diatomic molecules are known to exhibit as they approach the dissociation limit. Heavy alkali metals with adjacent electronic states often exhibit strong coupling between the spin and orbital angular momentum. The ground state X¹Σg⁺ and the lowest lying triplet state aᶟΣᵤ⁺ of Cs₂ exhibit such coupling effects and as a result, modeling the highest vibrational states of these states is a non-trivial problem. Utilizing scattering length values obtained from published analysis of 60 Feshbach resonances, the correct form of the potential energy function was determined. Moreover, the scattering length values were used to determine the correct leading dispersion coefficient that describes the true form of the long-range potential energy functions. All previous attempts to determine global potential energy functions for these states have considered only the optical spectroscopic data. This is the first ever effort attempting to use scattering lengths determined from cold atom collision experiments in a combined analysis with conventional spectroscopic data.

Page generated in 0.2109 seconds