141 |
α-Methylacyl-CoA racemase:an enzyme at crossroads in lipid metabolismSavolainen, K. (Kalle) 09 November 2004 (has links)
Abstract
α-Methylacyl-CoA racemase (Amacr) is an enzyme at the merging point of two important pathways of lipid metabolism: elimination of methyl-branched fatty acids and synthesis of bile acids. Amacr is regarded as obligatory for these processes. Patients with Amacr-deficiency suffer from adult onset sensory motor neuropathy and/or severe neonatal cholestasis with coagulopathy and fat-soluble vitamin malabsorption. Amacr is also linked to cancer and so far has been proposed as a new marker for diagnosis of at least prostate and colon cancers. Common sources of phytol derived branched-chain fatty acids for man are ruminant fats, meat and dairy products. The bile acid synthesis is the main pathway for cholesterol catabolism. Amacr is considered to be a member of family III of the CoA transferases (L-carnitine dehydratase - bile acid inducible protein F (CaiB-BaiF) family) and localized to two subcellular compartments, mitochondria and peroxisomes.
In this work the mouse gene encoding Amacr was characterized, the gene was inactivated and mutational and structural studies were used to determine the loop and the active site structure of the enzyme. It was shown that mouse Amacr which locates both to mitochondria and peroxisomes, is an identical product of a single gene, which is located at chromosome 15, region 15B1. Neither alternative replication, splicing, or any post-translational modifications of the enzyme occur.
The mouse model for Amacr-deficiency indicated a role of Amacr in detoxification of methyl-branched fatty acids, and suggested that a diet free from these phytol metabolites may function as a treatment for the deficiency. Furthermore, major changes were observed in the bile acid pool of the knock-out mice compared to wild type mice. However, the study suggests that there is an Amacr-independent pathway for synthesis of bile acids albeit of low capacity, which provides a way for Amacr-deficient individuals to survive.
The mutational and structural studies confirmed Amacr as a member of family III of the CoA transferases. Furthermore, according to comparisons of the structural data of Amacr and other members of the family (FRC, YfdW), the superfamily can be divided into two subgroups, racemases and transferases. Proteins in the subfamilies share the CoA-binding mode, but the substrate specificities as well as the catalysed reaction differ greatly.
|
142 |
Biofilm Structures in a Mono-Associated Mouse Model of Clostridium difficile InfectionSoavelomandroso, Anna P., Gaudin, Françoise, Hoys, Sandra, Nicolas, Valérie, Vedantam, Gayatri, Janoir, Claire, Bouttier, Sylvie 25 October 2017 (has links)
Clostridium difficile infection (CDI) is a major healthcare-associated disease with high recurrence rates. Host colonization is critical for the infectious process, both in first episodes and in recurrent disease, with biofilm formation playing a key role. The ability of C. difficile to form a biofilm on abiotic surfaces is established, but has not yet been confirmed in the intestinal tract. Here, four different isolates of C. difficile, which are in vitro biofilm producers, were studied for their ability to colonize germ-free mice. The level of colonization achieved was similar for all isolates in the different parts of the murine gastrointestinal tract, but pathogen burden was higher in the cecum and colon. Confocal laser scanning microscopy revealed that C. difficile bacteria were distributed heterogeneously over the intestinal tissue, without contact with epithelial cells. The R20291 strain, which belongs to the Ribotype 027 lineage, displayed a unique behavior compared to the other strains by forming numerous aggregates. By immunochemistry analyses, we showed that bacteria were localized inside and outside the mucus layer, irrespective of the strains tested. Most bacteria were entrapped in 3-D structures overlaying the mucus layer. For the R20291 strain, the cell-wall associated polysaccharide PS-II was detected in large amounts in the 3-D structure. As this component has been detected in the extrapolymeric matrix of in vitro C. difficile biofilms, our data suggest strongly that at least the R20291 strain is organized in the mono-associated mouse model in glycan-rich biofilm architecture, which sustainably maintains bacteria outside the mucus layer.
|
143 |
Characterization of Ambra1 heterozygous mice as genetic mouse model of female-specific autismJu, Anes 12 September 2016 (has links)
No description available.
|
144 |
B-cell Lymphoma-2 (Bcl-2) Is an Essential Regulator of Adult Hippocampal NeurogenesisCeizar, Maheen January 2012 (has links)
Of the thousands of dividing progenitor cells (PCs) generated daily in the adult brain only a very small proportion survive to become mature neurons through the process of neurogenesis. Identification of the mechanisms that regulate cell death associated with neurogenesis would aid in harnessing the potential therapeutic value of PCs. Apoptosis, or programmed cell death, is suggested to regulate death of PCs in the adult brain as overexpression of B-cell lymphoma 2 (Bcl-2), an anti-apoptotic protein, enhances the survival of new neurons. To directly assess if Bcl-2 is a regulator of apoptosis in PCs, this study examined the outcome of removal of Bcl-2 from the developing PCs in the adult mouse brain. Retroviral mediated gene transfer of Cre into adult floxed Bcl-2 mice eliminated Bcl-2 from developing PCs and resulted in the complete absence of new neurons at 30 days post viral injection. Similarly, Bcl-2 removal through the use of nestin-induced conditional knockout mice resulted in reduced number of mature neurons. The function of Bcl-2 in the PCs was also dependent on Bcl-2-associated X (BAX) protein, as demonstrated by an increase in new neurons formed following viral-mediated removal of Bcl-2 in BAX knockout mice. Together these findings demonstrate that Bcl-2 is an essential regulator of neurogenesis in the adult hippocampus.
|
145 |
Motor Deficits in an Alpha-Synuclein Mouse Model of Parkinson's Disease are not Exacerbated by Gba1 MutationFitzpatrick, Megan E. January 2017 (has links)
Parkinson’s disease is a movement disorder characterized by nigrostriatal dopamine pathway degeneration and neuronal α-synuclein accumulation. Pathogenesis is associated with mutations in α-synuclein and Gba1 encoding alleles. Animal models created to date do not recapitulate the spectrum of clinical disease features. This thesis characterizes the bi-genic Synergy mouse, hypothesized to demonstrate motor behavioural and histological abnormalities downstream of α-synuclein overexpression and mutated Gba1. Synergy and SNCA mice (overexpressed α-synuclein with wild-type Gba1) have early onset deficits in motor coordination, muscle strength and nest building. Both exhibit increased α-synuclein concentration in the brain and cerebellar inclusions positive for two markers of pathological α-synuclein processing. Overall mutant Gba1 expression within Synergy mice does not worsen the behaviour or the histopathological findings associated with overexpression of human α-synuclein in SNCA mice. Future studies will determine whether mutant Gba1 expression alters cognitive behaviour and/or lipid homeostasis in this new bi-genic model of Parkinson’s disease.
|
146 |
Study of the effects of Men1 disruption in mouse pancreatic endocrine progenitors during development and adult life / Étude des effets au cours du développement et pendant la vie adulte de l’invalidation du gène Men1 dans les progéniteurs endocrine pancréatiquesBonnavion, Rémy 20 September 2013 (has links)
Le syndrome des Néoplasies Endocriniennes Multiples de type I (NEM1) est une maladie tumorale héréditaire rare caractérisée par l'apparition de tumeurs notamment du pancréas endocrine. Le gène de prédisposition est le suppresseur de tumeur MEN1, généralement retrouvé muté sur un des 2 allèles au niveau germinal chez les patients NEM1. Les tumeurs endocrines pancréatiques sont rares mais souvent métastatiques lors du diagnostic. Ces tumeurs forment un groupe hétérogène de par le type d'hormone qu'elles peuvent sécréter. Le développement et l'évolution de ces tumeurs sont encore très mal compris. L'origine cellulaire des différents types de tumeurs endocrines pancréatiques reste énigmatique, notamment en ce qui concerne les tumeurs exprimant des hormones non pancréatiques tels que les gastrinomes. Mon projet de thèse s'est articulé autour de la caractérisation d'un nouveau modèle murin d'invalidation du gène Men1 spécifiquement dans les cellules progénitrices endocrine pancréatiques Ngn3+ (PEPs), le modèle PancEndoMen1 KO. Ces travaux nous ont permis de démontrer que les gastrinomes pancréatiques liés à l'inactivation du gène Men1, avaient pour origines les cellules pancréatiques endocrines elles-mêmes. De plus, les souris PancEndoMen1 KO, développent des altérations de prolifération différentes suivant les lignages endocrines. De surcroît, l'invalidation du gène Men1 soit dans les cellules progénitrices pancréatiques, soit dans les cellules PEPs conduit au développement de tumeurs caractérisées par une altération de leur différentiation endocrine. Ainsi, mes travaux de thèse ont permis de mieux renseigner l'histogenèse des tumeurs endocrines pancréatiques en adressant le rôle dans la tumorigenèse de l'invalidation de Men1 dans les cellules PEPs au cours du développement / Multiple Endocrine Neoplasia Type I syndrome (MEN1) is a rare hereditary tumoral disease characterized by the apparition of tumors in multiple endocrine organs including the endocrine pancreas. MEN1 patients generally carry a germinal mutation on one allele of the predisposing gene to the disease, the tumor suppressor MEN1. Pancreatic endocrine tumors are rare, slowly evolving and often present with metastasis at diagnosis. These tumors constitute a heterogeneous group defined by their hormonal secretions. Evolution and development of these tumors is far from being understood. The cell of origin of the different pancreatic endocrine tumor types is enigmatic, notably for tumors secreting non-pancreatic hormones such as gastrinomas. My thesis project was structured toward the characterization of a new murine model allowing the specific disruption of the Men1 gene in Ngn3+ pancreatic endocrine progenitors, the PancEndoMen1 KO model. The combined study of this new model and previous model generated in the team, allowed us to demonstrate that pancreatic gastrinomas related to Men1 inactivation, originate from the endogenous pancreatic endocrine cells. In parallel, our results demonstrated that the mutant mice having Men1-deficient Ngn3+-progenitors resulted in differential cell proliferation alterations in different pancreatic endocrine cells. Importantly, Men1-disruption in either pancreatic endocrine or pan-pancreatic progenitors displayed tumors with impaired differentiation features. Thus, this thesis works allowed to better characterize pancreatic endocrine tumors histogenesis by addressing the role of pancreatic endocrine progenitors targeted Men1 disruption during development in tumorigenesis
|
147 |
Effect of a high fat diet on a mouse model of Alzheimer's diseaseKnight, Elysse January 2011 (has links)
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, characterised by deficits in language, behaviour and memory. Increasing evidence suggests that mid-life obesity and a diet high in fat are risk factors for AD. In contrast, life-threatening weight loss occurs and worsens as the disease progresses, despite adequate or increased food intake. A greater understanding of energy balance in AD may therefore uncover novel targets for therapy. The aim of this thesis was to test the hypothesis that 3xTgAD mice display altered energy balance and that experimental changes to this balance will alter cognition. To address this hypothesis, three key objectives were set up; to characterise the energy balance profile, characterise behaviour and memory, and evaluate the response to an high fat (HF) diet in a triple transgenic (3xTgAD) model, an experimental mouse model of AD. Energy balance was characterised in non-transgenic (Non-Tg) control and 3xTgAD mice, demonstrating altered body weight, food intake and metabolic rate in the 3xTgAD mouse model of AD. At 2-month of age male 3xTgAD mice displayed greater food intake and body weight, but no difference in metabolic rate, whereas from 12 months of age 3xTgAD mice weighed less, despite eating more, and had a higher metabolic rate than Non-Tg control mice. This provides evidence that there is a shift towards a hypermetabolic state from 12 months of age in 3xTgAD mice, which may represent a key stage in advancement of the disease process. Behaviour and memory were characterised in Non-Tg control and 3xTgAD mice in a battery of tests at different ages. 3xTgAD mice showed changes in open-field activity/anxiety from 3 months of age. Memory impairments were first detected in 3xTgAD mice at 3 months of age as deficits in odour recognition memory, mirroring early impairments seen in AD patients. Deficits in spatial memory were then observed in both the Y-maze spontaneous alternation and Morris water maze tests from 5 months of age. Finally, deficits in non-spatial visual object memory were observed in 3xTgAD mice in the novel object recognition test at 8 months of age. Energy balance, behaviour and memory were assessed in Non-Tg control and 3xTgAD mice in response to an HF diet. Non-Tg control and 3xTgAD mice displayed similar energy balance profiles in response to an HF diet. The HF diet was found to worsen memory in Non-Tg mice in odour recognition at 3-4 and 7-8 months of age, in the Morris water maze at 7-8 months of age and in novel object recognition and spontaneous alternation at 11-12 and 15-16 months of age. Similarly, the HF diet worsened memory in 3xTgAD mice in odour discrimination at 3-4 and 7-8 months of age, the Morris water maze at 7-8 and 11-12 months of age, and in spontaneous alternation at 15-16 months of age. As an HF diet induced memory impairments, in both Non-Tg control and 3xTgAD mice, it suggests that diet-induced deficits may therefore, not be specific to AD, but rather to cognition in general. Overall, these data demonstrate that 3xTgAD mice show AD-like age-dependent changes in energy balance, behaviour and memory. Furthermore, an HF diet produced impairments in memory in 3xTgAD mice, but these effects were not specific to AD, as an HF diet also led to deficits in control animals. These data support a role for energy balance in the progression of AD, although the underlying mechanisms remain poorly understood. 3xTgAD mice may therefore represent a good model to examine energy balance during AD and to evaluate targets for future therapies.
|
148 |
Hippocampal dysfunction in the 3xTgAD mouse model of Alzheimer's diseaseDavis, Katherine January 2012 (has links)
Alzheimer’s disease (AD) is a neurodegenerative disorder, characterised by severe memory loss and the accumulation of amyloid-beta (Aβ) and tau pathology within neocortex and medial temporal lobe (MTL) structures. Episodic memory impairment is a defining feature of early AD. The hippocampal formation (HF), a major network involved in both memory formation and retrieval is one of the first areas affected by AD pathology. However, the aetiology of AD is unknown; specifically how Aβ and tau pathologies cause memory impairment and how the physiological function of HF is affected. In this thesis, the 3xTgAD mouse was used as a high fidelity model of human AD pathological progression to study the function of HF during early (intracellular Aβ) and more progressive (extracellular plaque and hyperphosphorylated tau pathology) AD stages, referred to as ‘young’ and ‘old’ respectively. Specifically we: i) applied the hippocampal-dependent What-Where-Which (WWWhich) task to study the onset and progression of episodic-like memory decline (previously uncharacterised in the 3xTgAD mouse); ii) examined allocentric spatial memory in radial arm water maze (RAWM) and spontaneous alternation (SA) behaviour in T-Maze to discern whether cognitive differences exist between spontaneous and negatively reinforced tasks (the latter could be influenced by an exaggerated stress response); and iii) performed electrophysiological recordings in vivo from the HF of urethane-anaesthetised 3xTgAD and control mice to study basic synaptic connectivity, short-term synaptic plasticity and neuronal reverberation across the CA1-DG axis using a multi-site electrode. Our results showed an early and specific deficit for WWWhich episodic-like memory in the 3xTgAD model, with a decline in performance witnessed in mice as young as 3 months. In contrast, 3xTgAD component memory comprising single or dual associations of ‘What’, ‘Where’, ‘Which’ and ‘When’ remained intact suggesting the episodic impairment was due to dysfunction during the association of three component information streams within hippocampus (Chapters 3 and 4). 3xTgAD mice were equally impaired for allocentric spatial memory in RAWM and in their SA behaviour, suggesting no inherent advantage of examining cognition in paradigms which elicit behavioural distress (Chapter 5). We witnessed the development of subtle synaptic abnormalities in young 3xTgAD mice in the form of enhanced short-term paired pulse facilitation in CA1 and DG, however, a paucity of response facilitation in CA1 in response to train stimulation. In contrast, we saw intact basic synaptic function (fibre integrity and synaptic connectivity) in 3xTgAD mice of both young and old ages, suggesting gross hippocampal circuitry remained in place (Chapter 6). Finally, we saw an effect of normal ageing on cognition in the WWWhich and spatial tasks (Chapters 4 and 5), and a decline in neuronal reverberation with age in control and 3xTgAD mice. Dysfunction in these two parameters (behavioural and electrophysiological) coincided with the onset of intracellular Aβ accumulation within HF in 3xTgAD mice. This suggests a role of intracellular Aβ in impairing the physiological function of HF in AD which translates as cognitive decline in hippocampal-dependent forms of memory. Episodic memory was found to be especially sensitive to AD-related pathology and impairment, thus the WWWhich task may be applied to faithfully study the onset of cognitive decline in other AD mouse models. Further examination of the relative contribution of Aβ to hippocampal dysfunction in the 3xTgAD model is required.
|
149 |
Peptides d'élastine et modulation de la réponse T helper au cours de la Broncho-Pneumopathie Chronique Obstructive (BPCO) / T helper respnse modulation by elastin peptides during Chronic Obstructive Pulmonary Disease (COPD)Meghraoui-Keddar, Aïda 17 July 2015 (has links)
La Broncho-Pneumopathie Chronique Obstructive (BPCO) est une pathologie inflammatoire chronique caractérisée par une détérioration irréversible des voies aériennes et des espaces alvéolaires. L'emphysème est la composante principale de la BPCO et l'exposition à la fumée de cigarette en est le principal facteur étiologique. La réponse inflammatoire au cours de la BPCO est caractérisée par une infiltration massive du tissu respiratoire par les cellules inflammatoires qui sécrètent de nombreuses protéases. Ces protéases participent à la dégradation des composants de la matrice extracellulaire et en particulier à la dégradation de l'élastine. Cette dégradation conduit à la genèse de peptides solubles d'élastine (PE) retrouvés dans les différents liquides biologiques de patients BPCO. Si les lymphocytes T CD4+ et les PE sont décrits dans la littérature comme impliqués dans la physiopathologie de la BPCO, en revanche, l'impact de leur interaction sur la polarisation Th reste à élucider. Le travail réalisé au cours de cette thèse a permis de mettre en évidence une polarisation de la réponse lymphocytaire T vers un profil de type Th1 et Th17 au cours de l'emphysème murin induit par le peptide d'élastine VGVAPG. Cette polarisation est dépendante de l'interaction du VGVAPG avec son récepteur spécifique à la surface des lymphocytes T, et est inhibée en présence d'analogues antagonistes du récepteur à l'élastine. Ces résultats permettent d'envisager l'utilisation de tels antagonistes comme des agents pharmacologiques régulant les effets délétères pro-inflammatoires de la réponse T helper au cours de la BPCO. / Chronic Obstructive Pulmonary Disease (COPD) is a chronic inflammatory disease characterized by irreversible damage to airways and alveolar spaces. Emphysema is the main component of COPD and exposure to tobacco smoke is the main etiological factor. The inflammatory response in COPD is characterized by a massive infiltration of respiratory tissue by inflammatory cells that secrete many proteases. These proteases participate in the degradation of extracellular matrix components and particularly in elastin degradation. This elastin breakdown leads to the genesis of soluble elastin peptides (EP) found in various biological fluids of COPD patients. If CD4+ T cells and EP are described in the literature as being involved in the pathophysiology of COPD, consequence of their interaction on the T helper polarization remains to elucidate. The work done during this thesis allowed highlighting the polarization of T cell response towards a Th1 and Th-17 profile during VGVAPG-induced murine emphysema. This polarization, which is dependent of the VGVAPG interaction with its specific receptor expressed on T cells, is inhibited using analogous antagonist elastin receptor peptides. These results allowed us to envisage such antagonist peptides as pharmacological agents that regulate the deleterious pro-inflammatory effects of the T helper cell response during COPD.
|
150 |
Exploration of pathomechanisms triggered by a single-nucleotide polymorphism in titin's I-band: the cardiomyopathy-linked mutation T2580IBogomolovas, Julius, Fleming, Jennifer R., Anderson, Brian R., Williams, Rhys, Lange, Stephan, Simon, Bernd, Khan, Muzamil M., Rudolf, Rüdiger, Franke, Barbara, Bullard, Belinda, Rigden, Daniel J., Granzier, Henk, Labeit, Siegfried, Mayans, Olga 28 September 2016 (has links)
Missense single-nucleotide polymorphisms (mSNPs) in titin are emerging as a main causative factor of heart failure. However, distinguishing between benign and disease-causing mSNPs is a substantial challenge. Here, we research the question of whether a single mSNP in a generic domain of titin can affect heart function as a whole and, if so, how. For this, we studied the mSNP T2850I, seemingly linked to arrhythmogenic right ventricular cardiomyopathy (ARVC). We used structural biology, computational simulations and transgenic muscle in vivo methods to track the effect of the mutation from the molecular to the organismal level. The data show that the T2850I exchange is compatible with the domain three-dimensional fold, but that it strongly destabilizes it. Further, it induces a change in the conformational dynamics of the titin chain that alters its reactivity, causing the formation of aberrant interactions in the sarcomere. Echocardiography of knock-in mice indicated a mild diastolic dysfunction arising from increased myocardial stiffness. In conclusion, our data provide evidence that single mSNPs in titin's I-band can alter overall muscle behaviour. Our suggested mechanisms of disease are the development of non-native sarcomeric interactions and titin instability leading to a reduced I-band compliance. However, understanding the T2850I-induced ARVC pathology mechanistically remains a complex problem and will require a deeper understanding of the sarcomeric context of the titin region affected.
|
Page generated in 0.0324 seconds