• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular Mechanisms Of Mrna Transport By A Class V Myosin And Cytoplasmic Dynein

Sladewski, Thomas Edward 01 January 2017 (has links)
mRNA localization ensures correct spatial and temporal control of protein synthesis in the cell. Using a single molecule in vitro approach, we provide insight into the mechanisms by which localizing mRNAs are carried by molecular motors on cytoskeletal tracks to their destination. Budding yeast serves as a model system for studying the mechanisms of mRNA transport because localizing mRNAs are moved on actin tracks in the cell by a single class V myosin motor, Myo4p. Molecular motors that specialize in cargo transport are generally double-headed so that they can "walk" for many microns without dissociating, a feature known as processivity. Thus, is was surprising when Myo4p purified from yeast was shown by in vitro assays to be non-processive. The reason for its inability to move processively is that the Myo4p heavy chain does not dimerize with itself, but instead binds tightly to the adapter protein She3p to form a single-headed motor complex. The mRNA-binding adapter protein She2p links Myo4p to mRNA cargo by binding She3p. To understand the molecular mechanisms of mRNA transport in budding yeast, we fully reconstituted a messenger ribonucleoprotein (mRNP) complex from purified proteins and a localizing mRNA (ASH1) found in budding yeast. Using single molecule in vitro assays, we find that She2p recruits two Myo4p-She3p complexes, forming a processive double-headed motor complex that is stabilized by mRNA at physiological ionic strength. Thus, only in the presence of mRNA is Myo4p capable of continuous mRNA transport, an elegant mechanism that ensures that only cargo bound motors are motile. We next wished to understand if the principles of mRNA transport in budding yeast are conserved in higher eukaryotes. In Drosophila, mRNA is transported on microtubule tracks by cytoplasmic dynein, and the adapters that link the motor to localizing transcripts are well-defined. The adapter protein bicaudal D (BicD) coordinates dynein motor activity with mRNA cargo binding. The N-terminus of BicD binds dynein, and the C-terminus interacts with the mRNA-binding protein Egalitarian. Unlike mammalian dynein alone, it was recently shown that an N-terminal fragment of BicD (BicD2CC1), in combination with a large 1.2MDa multi-subunit accessory complex called dynactin, forms a complex (DDBCC1) that is activated for long processive runs. But unlike the constitutively activated BicD2CC1 fragment, the full-length BicD molecule fails to recruit dynein-dynactin because it is auto-inhibited by interactions between the N-terminal dynein binding domain and the C-terminal cargo binding domain. To understand how dynein is activated by native cargo and full-length adapters, we fully reconstituted a mRNP complex in vitro from tissue-purified dynein and dynactin, expressed full-length adapters BicD and Egalitarian, and a synthesized localizing mRNA found in Drosophila. We find that only mRNA-bound Egalitarian is capable of relieving BicD auto-inhibition for the recruitment of dynein-dynactin, and activation of mRNA transport in vitro. Thus, the presence of an mRNA cargo for activation of motor complexes is a conserved mechanism in both budding yeast and higher eukaryotes to ensure that motor activity is tightly coupled to cargo selection.
2

mRNA Transport and Translation in the Developing Axons of the Zebrafish Embryo / Transport et traduction locale des arn messagers dans les axones en développement chez l'embryon de poisson-zèbre

Garcez Palha, Inês 24 October 2017 (has links)
Au cours des dernières années, la synthèse des protéines axonales a été établie comme un mécanisme important pour réguler correctement la réactivité spatiale et temporelle des neurones aux variations de leur microenvironnement, en particulier lors du développement axonal et de la régénération. Pour cela, les transcrits d'ARNm doivent être localisés dans les axones afin d'être traduits. De fait, plusieurs populations d'ARNm ont été identifiées le long des axones de divers types de neurones vertébrés. Le transport approprié des ARNm du corps cellulaire vers le compartiment axonal nécessite des séquences ou des structures spécifiques, généralement trouvées dans le 3'UTR du transcrit. Seules quelques études ont confirmé que le transport et la traduction des ARNm ont lieu dans les axones des vertébrés vivants et que ces mécanismes peuvent être impliqués dans des fonctions neuronales distinctes, comme le maintien de l'homéostasie axonale, le guidage, la croissance et la ramification axonales. Notre laboratoire a précédemment démontré in vivo la présence d'ARNm spécifiques, comme le transcrit de nefma, dans les axones en croissance chez l'embryon de poisson zèbre. En utilisant un système rapporteur développé au sein du laboratoire, il a été démontré que le transport axonal (ou la rétention au corps cellulaire) de plusieurs transcrits dépendait de leur 3'UTR. Se basant sur ces résultats importants, dans une première partie de ce travail, nous avons cherché à étudier la fonction du transcrit nefma transporté dans les axones en développement de l'embryon de poisson zèbre. En effet, Nefma est une protéine cytosquelette propre aux neurones, dont l'expression est déclenchée lors de la différenciation neuronale. Nous avons montré que l’immunoréactivité 3A10 est réduite à mesure que la concentration de MO augmente et que ce marquage est utile pour tester l'efficacité du MO, suggérant que l'anticorps 3A10 pourrait reconnaître nefma. Nous avons également démontré que les neurones de Mauthner se différencient au bon moment et au bon endroit chez les morphants. De plus, nous avons constaté que le « zigzagging » des axones morphants augmente avec la concentration de MO et que la protéine mbp s'accumule inégalement autour des faisceaux axonaux dans les morphants nefma. Cependant, les défauts de perte de fonction de nefma ne sont pas totalement pénétrants et difficiles à quantifier. En outre, dans une deuxième partie de la présente étude, nous avons mis au point une technique de détection de la traduction axonale d'ARNm spécifiques dans le même modèle in vivo. Pour cela, nous avons développé un système inspiré de la technique «TimeSTAMP» développée par l'équipe de Roger Tsien, qui nous permet d'identifier les sites de traduction en étiquetant de manière ingénieuse les protéines nouvellement synthétisées. / In recent years, axonal protein synthesis has been established as an important mechanism to fine regulate spatial and temporal neuronal responsiveness to the varying microenvironment, especially during axonal development and regeneration. For that, mRNA transcripts have to be localized to the axons in order to be translated. In fact, several mRNA populations have been identified along the axons of diverse vertebrate neuronal types. The proper transport from the cell body to the axonal compartment requires specific sequences or mRNA structures, usually found in the 3’UTR of the transcript. Only a few studies have confirmed that mRNA transport and translation take place in axons of living vertebrates, and that these mechanisms can be involved in distinct neuronal functions, as the maintenance of axonal homeostasis, pathfinding, and axonal growth and branching. Our lab previously demonstrated in vivo the presence of specific mRNAs, as nefma transcript, in growing axons of the zebrafish embryo. Thanking advantage of a reporter system developed in the lab, it was shown that axonal transport (or retention at the cell body) of several transcripts depended on their 3’UTR.Building upon these important results, in a first part of this work, we sought to investigate the function of the axonally transported nefma in the developing axons of the zebrafish embryo. Indeed, Nefma is a neuron-specific cytoskeletal protein, which expression is triggered during neuronal differentiation. We showed that the 3A10 signal is reduced as the MO concentration increases and this staining is a useful readout for the efficiency of the MO, suggesting that the 3A10 antibody might recognize nefma. We also demonstrated that the Mauthner neurons differentiate at the right time and place in the morphants. Moreover, we saw that the morphant axons zigzagging increases with increasing MO concentrations and that mbp accumulates in patches around axonal bundles in nefma morphants. However, nefma loss-of-function defects are not totally penetrant and difficult to quantify. Furthermore, in a second part of the present study, we aimed at optimizing a technique facilitating the visualization of axonal translation of specific mRNAs in the same in vivo model. For this, we developed a translation reporter system, inspired on the ‘TimeSTAMP’ technique developed by Roger Tsien’s team, which allows the identification of translation sites along the axons by labeling newly synthesized protein in an ingenious fashion.

Page generated in 0.0486 seconds