Spelling suggestions: "subject:"cotransport d'ARNm"" "subject:"detransport d'ARNm""
1 |
Étude protéomique et bioinformatique du phagosome de la drosophileBoulais, Jonathan January 2005 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
2 |
mRNA Transport and Translation in the Developing Axons of the Zebrafish Embryo / Transport et traduction locale des arn messagers dans les axones en développement chez l'embryon de poisson-zèbreGarcez Palha, Inês 24 October 2017 (has links)
Au cours des dernières années, la synthèse des protéines axonales a été établie comme un mécanisme important pour réguler correctement la réactivité spatiale et temporelle des neurones aux variations de leur microenvironnement, en particulier lors du développement axonal et de la régénération. Pour cela, les transcrits d'ARNm doivent être localisés dans les axones afin d'être traduits. De fait, plusieurs populations d'ARNm ont été identifiées le long des axones de divers types de neurones vertébrés. Le transport approprié des ARNm du corps cellulaire vers le compartiment axonal nécessite des séquences ou des structures spécifiques, généralement trouvées dans le 3'UTR du transcrit. Seules quelques études ont confirmé que le transport et la traduction des ARNm ont lieu dans les axones des vertébrés vivants et que ces mécanismes peuvent être impliqués dans des fonctions neuronales distinctes, comme le maintien de l'homéostasie axonale, le guidage, la croissance et la ramification axonales. Notre laboratoire a précédemment démontré in vivo la présence d'ARNm spécifiques, comme le transcrit de nefma, dans les axones en croissance chez l'embryon de poisson zèbre. En utilisant un système rapporteur développé au sein du laboratoire, il a été démontré que le transport axonal (ou la rétention au corps cellulaire) de plusieurs transcrits dépendait de leur 3'UTR. Se basant sur ces résultats importants, dans une première partie de ce travail, nous avons cherché à étudier la fonction du transcrit nefma transporté dans les axones en développement de l'embryon de poisson zèbre. En effet, Nefma est une protéine cytosquelette propre aux neurones, dont l'expression est déclenchée lors de la différenciation neuronale. Nous avons montré que l’immunoréactivité 3A10 est réduite à mesure que la concentration de MO augmente et que ce marquage est utile pour tester l'efficacité du MO, suggérant que l'anticorps 3A10 pourrait reconnaître nefma. Nous avons également démontré que les neurones de Mauthner se différencient au bon moment et au bon endroit chez les morphants. De plus, nous avons constaté que le « zigzagging » des axones morphants augmente avec la concentration de MO et que la protéine mbp s'accumule inégalement autour des faisceaux axonaux dans les morphants nefma. Cependant, les défauts de perte de fonction de nefma ne sont pas totalement pénétrants et difficiles à quantifier. En outre, dans une deuxième partie de la présente étude, nous avons mis au point une technique de détection de la traduction axonale d'ARNm spécifiques dans le même modèle in vivo. Pour cela, nous avons développé un système inspiré de la technique «TimeSTAMP» développée par l'équipe de Roger Tsien, qui nous permet d'identifier les sites de traduction en étiquetant de manière ingénieuse les protéines nouvellement synthétisées. / In recent years, axonal protein synthesis has been established as an important mechanism to fine regulate spatial and temporal neuronal responsiveness to the varying microenvironment, especially during axonal development and regeneration. For that, mRNA transcripts have to be localized to the axons in order to be translated. In fact, several mRNA populations have been identified along the axons of diverse vertebrate neuronal types. The proper transport from the cell body to the axonal compartment requires specific sequences or mRNA structures, usually found in the 3’UTR of the transcript. Only a few studies have confirmed that mRNA transport and translation take place in axons of living vertebrates, and that these mechanisms can be involved in distinct neuronal functions, as the maintenance of axonal homeostasis, pathfinding, and axonal growth and branching. Our lab previously demonstrated in vivo the presence of specific mRNAs, as nefma transcript, in growing axons of the zebrafish embryo. Thanking advantage of a reporter system developed in the lab, it was shown that axonal transport (or retention at the cell body) of several transcripts depended on their 3’UTR.Building upon these important results, in a first part of this work, we sought to investigate the function of the axonally transported nefma in the developing axons of the zebrafish embryo. Indeed, Nefma is a neuron-specific cytoskeletal protein, which expression is triggered during neuronal differentiation. We showed that the 3A10 signal is reduced as the MO concentration increases and this staining is a useful readout for the efficiency of the MO, suggesting that the 3A10 antibody might recognize nefma. We also demonstrated that the Mauthner neurons differentiate at the right time and place in the morphants. Moreover, we saw that the morphant axons zigzagging increases with increasing MO concentrations and that mbp accumulates in patches around axonal bundles in nefma morphants. However, nefma loss-of-function defects are not totally penetrant and difficult to quantify. Furthermore, in a second part of the present study, we aimed at optimizing a technique facilitating the visualization of axonal translation of specific mRNAs in the same in vivo model. For this, we developed a translation reporter system, inspired on the ‘TimeSTAMP’ technique developed by Roger Tsien’s team, which allows the identification of translation sites along the axons by labeling newly synthesized protein in an ingenious fashion.
|
Page generated in 0.0569 seconds