• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estimates for the condition numbers of large semi-definite Toeplitz matrices

Böttcher, A., Grudsky, S. M. 30 October 1998 (has links) (PDF)
This paper is devoted to asymptotic estimates for the condition numbers $\kappa(T_n(a))=||T_n(a)|| ||T_n^(-1)(a)||$ of large $n\cross n$ Toeplitz matrices $T_N(a)$ in the case where $\alpha \element L^\infinity$ and $Re \alpha \ge 0$ . We describe several classes of symbols $\alpha$ for which $\kappa(T_n(a))$ increases like $(log n)^\alpha, n^\alpha$ , or even $e^(\alpha n)$ . The consequences of the results for singular values, eigenvalues, and the finite section method are discussed. We also consider Wiener-Hopf integral operators and multidimensional Toeplitz operators.
2

Estimates for the condition numbers of large semi-definite Toeplitz matrices

Böttcher, A., Grudsky, S. M. 30 October 1998 (has links)
This paper is devoted to asymptotic estimates for the condition numbers $\kappa(T_n(a))=||T_n(a)|| ||T_n^(-1)(a)||$ of large $n\cross n$ Toeplitz matrices $T_N(a)$ in the case where $\alpha \element L^\infinity$ and $Re \alpha \ge 0$ . We describe several classes of symbols $\alpha$ for which $\kappa(T_n(a))$ increases like $(log n)^\alpha, n^\alpha$ , or even $e^(\alpha n)$ . The consequences of the results for singular values, eigenvalues, and the finite section method are discussed. We also consider Wiener-Hopf integral operators and multidimensional Toeplitz operators.

Page generated in 0.0366 seconds