Spelling suggestions: "subject:"MSC 65030"" "subject:"MSC 652030""
1 |
The Matrix Sign Function Method and the Computation of Invariant SubspacesByers, R., He, C., Mehrmann, V. 30 October 1998 (has links) (PDF)
A perturbation analysis shows that if a numerically stable
procedure is used to compute the matrix sign function, then it is competitive
with conventional methods for computing invariant subspaces.
Stability analysis of the Newton iteration improves an earlier result of Byers
and confirms that ill-conditioned iterates may cause numerical
instability. Numerical examples demonstrate the theoretical results.
|
2 |
Newtons method with exact line search for solving the algebraic Riccati equationBenner, P., Byers, R. 30 October 1998 (has links) (PDF)
This paper studies Newton's method for solving the algebraic Riccati equation combined with an exact line search. Based on these considerations we present a Newton{like method for solving algebraic Riccati equations. This method can improve the sometimes erratic convergence behavior of Newton's method.
|
3 |
The Matrix Sign Function Method and the Computation of Invariant SubspacesByers, R., He, C., Mehrmann, V. 30 October 1998 (has links)
A perturbation analysis shows that if a numerically stable
procedure is used to compute the matrix sign function, then it is competitive
with conventional methods for computing invariant subspaces.
Stability analysis of the Newton iteration improves an earlier result of Byers
and confirms that ill-conditioned iterates may cause numerical
instability. Numerical examples demonstrate the theoretical results.
|
4 |
Newtons method with exact line search for solving the algebraic Riccati equationBenner, P., Byers, R. 30 October 1998 (has links)
This paper studies Newton's method for solving the algebraic Riccati equation combined with an exact line search. Based on these considerations we present a Newton{like method for solving algebraic Riccati equations. This method can improve the sometimes erratic convergence behavior of Newton's method.
|
5 |
A cyclic low rank Smith method for large, sparse Lyapunov equations with applications in model reduction and optimal controlPenzl, T. 30 October 1998 (has links) (PDF)
We present a new method for the computation of low rank approximations
to the solution of large, sparse, stable Lyapunov equations. It is based
on a generalization of the classical Smith method and profits by the
usual low rank property of the right hand side matrix.
The requirements of the method are moderate with respect to both
computational cost and memory.
Hence, it provides a possibility to tackle large scale control
problems.
Besides the efficient solution of the matrix equation itself,
a thorough integration of the method into several control
algorithms can improve their performance
to a high degree.
This is demonstrated for algorithms
for model reduction and optimal control.
Furthermore, we propose a heuristic for determining a set of
suboptimal ADI shift parameters. This heuristic, which is based on a
pair of Arnoldi processes, does not require any a priori
knowledge on the spectrum of
the coefficient matrix of the Lyapunov equation.
Numerical experiments show the efficiency of the iterative scheme
combined with the heuristic for the ADI parameters.
|
6 |
A cyclic low rank Smith method for large, sparse Lyapunov equations with applications in model reduction and optimal controlPenzl, T. 30 October 1998 (has links)
We present a new method for the computation of low rank approximations
to the solution of large, sparse, stable Lyapunov equations. It is based
on a generalization of the classical Smith method and profits by the
usual low rank property of the right hand side matrix.
The requirements of the method are moderate with respect to both
computational cost and memory.
Hence, it provides a possibility to tackle large scale control
problems.
Besides the efficient solution of the matrix equation itself,
a thorough integration of the method into several control
algorithms can improve their performance
to a high degree.
This is demonstrated for algorithms
for model reduction and optimal control.
Furthermore, we propose a heuristic for determining a set of
suboptimal ADI shift parameters. This heuristic, which is based on a
pair of Arnoldi processes, does not require any a priori
knowledge on the spectrum of
the coefficient matrix of the Lyapunov equation.
Numerical experiments show the efficiency of the iterative scheme
combined with the heuristic for the ADI parameters.
|
Page generated in 0.0265 seconds