• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • 2
  • Tagged with
  • 24
  • 24
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rheological studies of non-aqueous poly methyl methacrylate dispersions stabilised using graft copolymer steric stabilisers

Savage, Matthew John January 1998 (has links)
Steric stabilisers were synthesised via the copolymerisation of styrene with acrylic macromonomers. The macromonomers were prepared by end capping reactions of poly 2-ethyl hexyl acrylate (PEHA) prepolymer with vinyl containing species. Preliminary reaction routes proceeded via the use of oxalyl chloride to create an acyl chloride intermediate followed by end capping with hydroxy ethyl methacrylate. This process was found to be inefficient due to the moisture sensitivity of the acyl chloride. The second route involved the direct end capping of the PEHA pre-polymer with glycidyl methacrylate (GMA). Macromonomer conversion levels were improved for the GMA route via the use of high temperatures and tertiary amine catalysts. An optimum set of conditions was achieved using 1.4 diazabicyclo [2.2.2.] octane as the catalyst and a reaction temperature of 160 QC. Non aqueous dispersion polymerisations of methyl methacrylate were performed. The factors affecting particle size in both single stage and twin stage polymerisation schemes were studied. Increases in the particle sizes of these dispersions were observed with increases in the total monomer concentration and also with decreases in the total stabiliser concentration. Increases in the particle size could also be achieved by increasing the proportion of the total monomer in the seed stage of the twin stage reaction and also by decreasing the proportion of the total stabiliser in the seed stage. The importance of the role of the seed upon the final particle size was firmly established. The rheology of these non aqueous dispersions was studied over a range of concentrations and under increasing shear stresses. At Iow and intennediate volume fractions the dispersions were observed to be predominantly Newtonian. Non-Newtonian behaviour was only observed at the extremes of the shear stress ranges studied. At high volume fractions of the dispersions non-Newtonian behaviour was observed over the range of shear stresses studied. Maximum volume fractions (~m) were calculated for these dispersions using the Kreiger-Dougherty equation. When these dispersions were blended in size ratios of 2:1 it was observed that 4 > m could be increased due to improved particle packing efficiency.
2

Role of Carboxylate ligands in the Synthesis of AuNPs: Size Control, Molecular Interaction and Catalytic Activity

Aljohani, Hind Abdullah 22 May 2016 (has links)
Nanoparticles (NPs) are the basis of nanotechnology and finding numerous applications in various fields such as health, electronics, environment, personal care products, transportation, and catalysis. To fulfill these functions, the nanoparticles must be synthesized, passivated to control their chemical reactivity, stabilized against aggregation and functionalized to achieve specific performances. The chemistry of metal nanoparticles especially that of noble metals (Gold, Platinum…) is a growing field. The nanoparticles have indeed different properties from those of the corresponding bulk material. These properties are largely influenced by several parameters; the most important are the size, shape, and the local environment of the nanoparticles. One of the most common synthetic methods for the preparation of gold nanoparticles (AuNPs) is based on stabilization by citrate. Since it was reported first by Turkevich et al. in 1951, this synthetic scheme has been widely used, studied and a substantial amount of important information regarding this system has been reported in the literature. The most popular method developed by Frens for controlling the size of the noble gold nanoparticles based on citrate was achieved by varying the concentration of sodium citrate. Despite a large number of investigations focused on utilizing Cit-AuNPs, the structural details of citrate anions adsorbed on the AuNP surface are still unknown. It is known only that citrate anions “coordinate” to the metal surface by inner sphere complexation of the carboxylate groups and there are trace amounts of AuCl4−, Cl−, and OH− on the metal surface. Moreover, it is generally accepted that the ligand shell morphology of Au nanoparticles can be partly responsible for important properties such as oxidation of carbon monoxide. The use of Au-NPs in heterogeneous catalysis started mostly with Haruta who discovered the effect of particle size on the activity for carbon monoxide oxidation at low temperature. The structure of the citrate layer on the AuNP surface may be a key factor in gaining a more detailed understanding of nanoparticle formation and stabilization. This can be affecting the catalytic activity. These thoughts invited us to systematically examine the role of sodium citrate as a stabilizer of gold nanoparticles, which is the main theme of this thesis. This research is focused on three main objectives, controlling the size of the gold nanoparticles based on citrate (and other carboxylate ligands Trisodium citrate dihydrate, Isocitric Acid, Citric acid, Trimesic acid, Succinic Acid, Phthalic acid, Disodium glutarate, Tartaric Acid, Sodium acetate, Acetic Acid and Formic Acid by varying the concentration of Gold/sodium citrate, investigating the interaction of the citrate layer on the AuNP surface, and testing the activity of the Au/TiO2 catalysts for the oxidation of carbon monoxide. This thesis will be divided into five chapters. In Chapter 1, a general literature study on the various applications and methods of synthesis of Au nanoparticles is described. Then we present the main synthetic pathways of Au nanoparticles we selected. A part of the bibliographic study was given to the use of Au nanoparticles in catalysis. In Chapter 2, we give a brief description of the different experimental procedures and characterization techniques utilized over the course of the present work. The study of the size control and the interaction between gold nanoparticles and the stabilizer (carboxylate groups) was achieved by using various characterization techniques such as UV-visible spectroscopy, Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Nuclear Magnetic resonance spectroscopy (NMR) and Fourier transform infrared spectroscopy (FTIR). In Chapter 3, we discuss the synthesis and size control of Au nanoparticles by following the growth of these nanoparticles by UV-Visible spectroscopy and TEM. We then describe the effect of the concentrations and of various type of the stabilizer, and the post-synthesis treatment on gold nanoparticles size. In Chapter 4, we focus on determining the nature of the interactions at molecular level between citrate (and other carboxylate-containing ligands) and AuNP in terms of the mode of coordination at the surface, and the formal oxidation state of Au when interacting with these negatively charged carboxylate ligands (i.e., LX- in the Green formalism). We achieve this by combining very advanced 13C CP/MAS, 23Na MAS and low-temperature SSNMR, high-resolution transmission electron microscopy (HRTEM) and density functional theory (DFT) calculations. A particular emphasis will be based on SS-NMR. In Chapter 5, we study the influence of pretreatment of 1% Au/TiO2 catalysts on the resulting activity in the oxidation of carbon monoxide, the effect of the concentration and the type of the ligands on the catalytic activity. The catalysts were characterized by TPO, XRD, and TEM spectroscopy.
3

Evaluating the role of the fission yeast cyclin B Cdc13 in cell size homeostasis

Rogers, Jessie Michaela 15 June 2021 (has links)
Most cellular proteins retain a stable concentration as cells grow and divide, but there are exceptions. Some cell cycle regulators change in concentration with cell size. In fission yeast, Cdc13 (cyclin B), an important activator of the core cell cycle kinase Cdc2 (CDK1), increases in concentration as cells grow. It has been proposed that the concentration of such cell cycle regulators serves as a proxy for cell size and makes cell cycle progression dependent on cell size, thereby contributing to cell size homeostasis. The underlying mechanisms for the size-dependent scaling of these cell cycle regulators are poorly understood. Here, I show that Cdc13 protein concentration, but not mRNA concentration, increases with cell size. Furthermore, only the nuclear, but not the cytoplasmic, fraction of Cdc13 increases in concentration as cell size increases. Computational modeling along with half-life measurements suggests that stabilization of Cdc13 in the nucleus plays an important role in establishing this pattern. Taken together, my results suggest that Cdc13 scales with time, and therefore only indirectly—not directly—with cell size. This leaves open the possibility that Cdc13 contributes to cell size homeostasis, but in a different way than originally proposed. / Master of Science / Cells maintain their size very efficiently, but how they manage to do so is not well characterized. It has been suggested that cells sense their size by the size-dependent concentration changes of cell cycle proteins. I have investigated how cyclin B may serve as such a proxy for cell size in fission yeast. My data suggest that fission yeast cyclin B indirectly scales with cell size through an unknown time-based mechanism.
4

Mathematical modeling of pathways involved in cell cycle regulation and differentiation

Ravi, Janani 12 January 2012 (has links)
Cellular processes critical to sustaining physiology, including growth, division and differentiation, are carefully governed by intricate control systems. Deregulations in these systems often result in complex diseases such as cancer. Hence, it is crucial to understand the interactions between molecular players of these control systems, their emergent network dynamics, and, ultimately, the overall contribution to cellular physiology. In this dissertation, we have developed a mathematical framework to understand two such cellular systems: an early checkpoint (START) in the budding yeast cell cycle (Chapter 1), and the canonical Wnt signaling pathway involved in cell proliferation and differentiation (Chapter 2). START transition is an important decision point where the cell commits to one round DNA replication followed by cell division. Several years of experimental research have gone into uncovering molecular details of this process, but a unified understanding is yet to emerge. In chapter one, we have developed a comprehensive mathematical model of START transition that incorporates several findings including information about the phosphorylation state of key START proteins and their subcellular localization. In the second chapter, we focus on modeling the canonical Wnt signaling pathway, a cellular circuit that plays a key role in cell proliferation and differentiation. The Wnt pathway is often deregulated in colon cancers. Based on some evidence of bistability in the Wnt signaling pathway, we proposed the existence of a positive feedback loop underlying the activation and inactivation of the core protein complex of the pathway. Bistability is a common feature of biological systems that toggle between ON and OFF states because it ensures robust switching back and forth between the two states. To study and explain the behavior of this dynamical system, we developed a mathematical model. Based on experimentally determined interactions, our simple model recapitulates the observed phenomena of bimodality (bistability) and hysteresis under the effects of the physiological signal (Wnt), a Wnt-mimic (LiCl), and a stabilizer of one of the key members of core complex (IWR-1). Overall, we believe that cell biologists and molecular geneticists can benefit from our work by using our model to make novel quantitative predictions for experimental verification. / Ph. D.
5

On the Fabrication of Microparticles Using Electrohydrodynamic Atomization Method

Kuang, Lim Liang, Wang, Chi-Hwa, Smith, Kenneth A. 01 1900 (has links)
A new approach for the control of the size of particles fabricated using the Electrohydrodynamic Atomization (EHDA) method is being developed. In short, the EHDA process produces solution droplets in a controlled manner, and as the solvent evaporates from the surface of the droplets, polymeric particles are formed. By varying the voltage applied, the size of the droplets can be changed, and consequently, the size of the particles can also be controlled. By using both a nozzle electrode and a ring electrode placed axisymmetrically and slightly above the nozzle electrode, we are able to produce a Single Taylor Cone Single Jet for a wide range of voltages, contrary to just using a single nozzle electrode where the range of permissible voltage for the creation of the Single Taylor Cone Single Jet is usually very small. Phase Doppler Particle Analyzer (PDPA) test results have shown that the droplet size increases with increasing voltage applied. This trend is predicted by the electrohydrodynamic theory of the Single Taylor Cone Single Jet based on a perfect dielectric fluid model. Particles fabricated using different voltages do not show much change in the particles size, and this may be attributed to the solvent evaporation process. Nevertheless, these preliminary results do show that this method has the potential of providing us with a way of fine controlling the particles size using relatively simple method with trends predictable by existing theories. / Singapore-MIT Alliance (SMA)
6

Precise Size Control and Noise Reduction of Solid-state Nanopores for the Detection of DNA-protein Complexes

Beamish, Eric 07 December 2012 (has links)
Over the past decade, solid-state nanopores have emerged as a versatile tool for the detection and characterization of single molecules, showing great promise in the field of personalized medicine as diagnostic and genotyping platforms. While solid-state nanopores offer increased durability and functionality over a wider range of experimental conditions compared to their biological counterparts, reliable fabrication of low-noise solid-state nanopores remains a challenge. In this thesis, a methodology for treating nanopores using high electric fields in an automated fashion by applying short (0.1-2 s) pulses of 6-10 V is presented which drastically improves the yield of nanopores that can be used for molecular recognition studies. In particular, this technique allows for sub-nanometer control over nanopore size under experimental conditions, facilitates complete wetting of nanopores, reduces noise by up to three orders of magnitude and rejuvenates used pores for further experimentation. This improvement in fabrication yield (over 90%) ultimately makes nanopore-based sensing more efficient, cost-effective and accessible. Tuning size using high electric fields facilitates nanopore fabrication and improves functionality for single-molecule experiments. Here, the use of nanopores for the detection of DNA-protein complexes is examined. As proof-of-concept, neutravidin bound to double-stranded DNA is used as a model complex. The creation of the DNA-neutravidin complex using polymerase chain reaction with biotinylated primers and subsequent purification and multiplex creation is discussed. Finally, an outlook for extending this scheme for the identification of proteins in a sample based on translocation signatures is presented which could be implemented in a portable lab-on-a-chip device for the rapid detection of disease biomarkers.
7

Precise Size Control and Noise Reduction of Solid-state Nanopores for the Detection of DNA-protein Complexes

Beamish, Eric 07 December 2012 (has links)
Over the past decade, solid-state nanopores have emerged as a versatile tool for the detection and characterization of single molecules, showing great promise in the field of personalized medicine as diagnostic and genotyping platforms. While solid-state nanopores offer increased durability and functionality over a wider range of experimental conditions compared to their biological counterparts, reliable fabrication of low-noise solid-state nanopores remains a challenge. In this thesis, a methodology for treating nanopores using high electric fields in an automated fashion by applying short (0.1-2 s) pulses of 6-10 V is presented which drastically improves the yield of nanopores that can be used for molecular recognition studies. In particular, this technique allows for sub-nanometer control over nanopore size under experimental conditions, facilitates complete wetting of nanopores, reduces noise by up to three orders of magnitude and rejuvenates used pores for further experimentation. This improvement in fabrication yield (over 90%) ultimately makes nanopore-based sensing more efficient, cost-effective and accessible. Tuning size using high electric fields facilitates nanopore fabrication and improves functionality for single-molecule experiments. Here, the use of nanopores for the detection of DNA-protein complexes is examined. As proof-of-concept, neutravidin bound to double-stranded DNA is used as a model complex. The creation of the DNA-neutravidin complex using polymerase chain reaction with biotinylated primers and subsequent purification and multiplex creation is discussed. Finally, an outlook for extending this scheme for the identification of proteins in a sample based on translocation signatures is presented which could be implemented in a portable lab-on-a-chip device for the rapid detection of disease biomarkers.
8

Precise Size Control and Noise Reduction of Solid-state Nanopores for the Detection of DNA-protein Complexes

Beamish, Eric January 2012 (has links)
Over the past decade, solid-state nanopores have emerged as a versatile tool for the detection and characterization of single molecules, showing great promise in the field of personalized medicine as diagnostic and genotyping platforms. While solid-state nanopores offer increased durability and functionality over a wider range of experimental conditions compared to their biological counterparts, reliable fabrication of low-noise solid-state nanopores remains a challenge. In this thesis, a methodology for treating nanopores using high electric fields in an automated fashion by applying short (0.1-2 s) pulses of 6-10 V is presented which drastically improves the yield of nanopores that can be used for molecular recognition studies. In particular, this technique allows for sub-nanometer control over nanopore size under experimental conditions, facilitates complete wetting of nanopores, reduces noise by up to three orders of magnitude and rejuvenates used pores for further experimentation. This improvement in fabrication yield (over 90%) ultimately makes nanopore-based sensing more efficient, cost-effective and accessible. Tuning size using high electric fields facilitates nanopore fabrication and improves functionality for single-molecule experiments. Here, the use of nanopores for the detection of DNA-protein complexes is examined. As proof-of-concept, neutravidin bound to double-stranded DNA is used as a model complex. The creation of the DNA-neutravidin complex using polymerase chain reaction with biotinylated primers and subsequent purification and multiplex creation is discussed. Finally, an outlook for extending this scheme for the identification of proteins in a sample based on translocation signatures is presented which could be implemented in a portable lab-on-a-chip device for the rapid detection of disease biomarkers.
9

Cell size homeostasis in animal cells / Etude de l'homéostasie de taille chez les cellules animales

Cadart, Clotilde 03 May 2017 (has links)
Le mécanisme d’homéostasie de taille chez les cellules animales est très peu compris actuellement. Cette question est pourtant d’un intérêt majeur car le maintien de l’homéostasie de taille dans une population de cellules prolifératives doit se faire par une coordination entre la croissance et la division. Chez la levure S. pombe, il a ainsi été montré que la taille est une information cruciale pour déclencher l’entrée en mitose (Fantes, 1977). Chez plusieurs bactéries et les cellules filles de la levure S. cerevisiae au contraire, de récentes études ont au contraire montré que l’homéostasie de taille était le résultat d’une addition constante de volume, indépendamment de la taille initiale des cellules (Campos et al., 2014; Soifer et al., 2016; Taheri-Araghi et al., 2015). Ce mécanisme est appelé « adder » et génère une régression des tailles à la moyenne, génération après génération. Ces résultats ont été possibles grâce au développement de techniques permettant la mesure dynamique du volume à l’échelle de la cellule unique et sur plusieurs générations. Une telle mesure est cependant très difficile chez les cellules de mammifère dont le volume fluctue constamment et qui cyclent sur des temps plus longs (environ 20 heures). Pour cette raison, la plupart des approches proposées sont indirectes (Kafri et al., 2013; Sung et al., 2013; Tzur et al., 2009) ou reposent sur une mesure de la masse plutôt que du volume (Mir et al. 2014; Son et al., 2012). Ensemble, ces études ont montré que les cellules de mammifère croissaient de manière exponentielle. Elles ont aussi remis en cause le modèle traditionnel qui proposait que l’homéostasie de taille reposait sur l’adaptation de la durée du cycle et mis en avant un rôle de la régulation de la vitesse de croissance. Cependant, aucun modèle n’a réellement été proposé ou démontré. La nature et l’existence même d’un mécanisme maintenant l’homéostasie de taille des cellules de mammifère est en fait discutée (Lloyd, 2013).Pour caractériser l’homéostasie de taille des cellules de mammifères, nous avons développé une technique permettant pour la première fois la mesure du volume de ces cellules sur des cycles complets (Cadart et al., 2017; Zlotek-Zlotkiewicz et al. 2015). Nous montrons que plusieurs types cellulaires (HT29, MDCK et HeLa) se comportent d’une manière similaire à celle d’un « adder ». Pour tester davantage cette observation, nous induisons artificiellement des divisions asymétriques en confinant les cellules dans des micro-canaux. Nous observons que les asymétries de tailles sont réduites mais pas complètement corrigées au cours du cycle suivant, à la manière d’un « adder ». Pour comprendre comment la croissance et la progression dans le cycle sont coordonnées et génère cet « adder », nous combinons notre méthode de mesure de volume avec un suivi de la progression dans les différentes phases du cycle. Nous montrons que la durée de la phase G1 est inversement corrélée au volume initial des cellules. Cependant, cette corrélation semble contrainte par une durée minimale de G1 mise en évidence lors de l’étude de cellules artificiellement poussées à atteindre de grandes tailles. Néanmoins, même dans cette condition où la modulation de la durée du cycle est perdue, l’observation du « adder » est maintenue. Ceci suggère un rôle complémentaire de la régulation de la vitesse de croissance des cellules. Nous proposons donc une méthode pour estimer théoriquement la contribution relative de l’adaptation de la vitesse de croissance et de la durée du cycle dans le contrôle de la taille. Nous utilisons cette méthode pour proposer un cadre général où comparer le processus homéostatique des bactéries et de nos cellules. En conclusion, notre travail apporte pour la première fois la démonstration que les cellules de mammifères maintiennent l’homéostasie grâce à un mécanisme similaire au « adder ». Ce mécanisme semble impliquer à la fois une modulation de la durée du cycle et du taux de croissance. / The way proliferating mammalian cells maintain a constant size through generations is still unknown. This question is however central because size homeostasis is thought to occur through the coordination of growth and cell cycle progression. In the yeast S. pombe for example, the trigger for cell division is the reach of a target size (Fantes, 1977). This mechanism is referred to as ‘sizer’. The homeostatic behavior of bacteria and daughter cells of the yeast S. cerevisiae on the contrary was recently characterized as an ‘adder’ where all cells grow by the same absolute amount of volume at each cell cycle. This leads to a passive regression towards the mean generation after generation (Campos et al., 2014; Soifer et al., 2016; Taheri-Araghi et al., 2015). These findings were made possible by the development of new technologies enabling direct and dynamic measurement of volume over full cell cycle trajectories. Such measurement is extremely challenging in mammalian cells whose shape constantly fluctuate over time and cycle over 20 hours long periods. Studies therefore privileged indirect approaches (Kafri et al., 2013; Sung et al., 2013; Tzur et al., 2009) or indirect measurement of cell mass rather than cell volume (Mir et al. 2014; Son et al., 2012). These studies showed that cells overall grew exponentially and challenged the classical view that cell cycle duration was adapted to size and instead proposed a role for growth rate regulation. To date however, no clear model was reached. In fact, the nature and even the existence of the size homeostasis behavior of mammalian cells is still debated (Lloyd, 2013).In order to characterize the homeostatic process of mammalian cells, we developed a technique that enable measuring, for the first time, single cell volume over full cell cycle trajectories (Cadart et al., 2017; Zlotek-Zlotkiewicz et al. 2015). We found that several cell types, HT29, HeLa and MDCK cells behaved in an adder-like manner. To further test the existence of homeostasis, we artificially induced asymmetrical divisions through confinement in micro-channels. We observed that asymmetries of sizes were reduced within the following cell cycle through an ‘adder’-like behavior. To then understand how growth and cell cycle progression were coordinated in way that generates the ‘adder’, we combined our volume measurement method with cell cycle tracking. We showed that G1 phase duration is negatively correlated with initial size. This adaptation is however limited by a minimum duration of G1, unraveled by the study of artificially-induced very large cells. Nevertheless, the adder behavior is maintained even in the absence of time modulation, thus suggesting a complementary growth regulatory mechanism. Finally, we propose a method to estimate theoretically the relative contribution of growth and timing modulation in the overall size control and use this framework to compare our results with that of bacteria. Overall, our work provides the first evidence that proliferating mammalian cells behave in an adder-like manner and suggests that both growth and cell cycle duration are involved in size control.
10

SIZE-CONTROLLED SYNTHESIS OF TRANSITION METAL NANOPARTICLES THROUGH CHEMICAL AND PHOTO-CHEMICAL ROUTES

Tangeysh, Behzad January 2015 (has links)
The central objective of this work is developing convenient general procedures for controlling the formation and stabilization of nanoscale transition metal particles. Contemporary interest in developing alternative synthetic approaches for producing nanoparticles arises in large part from expanding applications of the nanomaterials in areas such as catalysis, electronics and medicine. This research focuses on advancing the existing nanoparticle synthetic routes by using a new class of polymer colloid materials as a chemical approach, and the laser irradiation of metal salt solution as a photo-chemical method to attain size and shape selectivity. Controlled synthesis of small metal nanoparticles with sizes ranging from 1 to 5nm is still a continuing challenge in nanomaterial synthesis. This research utilizes a new class of polymer colloid materials as nano-reactors and protective agents for controlling the formation of small transition metal nanoparticles. The polymer colloid particles were formed from cross-linking of dinegatively charged metal precursors with partially protonated poly dimethylaminoethylmethacrylate (PDMAEMA). Incorporation of [PtCl6]2- species into the colloidal particles prior to the chemical reduction was effectively employed as a new strategy for synthesis of unusually small platinum nanoparticles with narrow size distributions (1.12 ± 0.25nm). To explore the generality of this approach, in a series of proof-of-concept studies, this method was successfully employed for the synthesis of small palladium (1.4 ±0.2nm) and copper nanoparticles (1.5 ±0.6nm). The polymer colloid materials developed in this research are pH responsive, and are designed to self-assemble and/or disassemble by varying the levels of protonation of the polymer chains. This unique feature was used to tune the size of palladium nanoparticles in a small range from 1nm to 5nm. The procedure presented in this work is a new convenient room temperature route for synthesis of small nanoparticles, and its application can be extended to the formation of other transition metals and alloy nanoparticles. This research also focuses on developing new photo-chemical routes for controlling the size and shape of the nanoparticles through high-intensity ultra-fast laser irradiation of metal salt solution. One of the core objectives of this work is to explore the special capabilities of shaped laser pulses in formation of metal nanoparticles through irradiation of the solutions by using simultaneous spatial and temporal focusing (SSTF). Femtosecond laser irradiation has not yet been widely applied for nanoparticle synthesis, and offers new regimes of energy deposition for synthesis of nanomaterials. Photo-reduction of aqueous [AuCl4]- solution to the gold nanoparticles (AuNPs) has been applied as a model process for optimizing the experimental procedures, and evaluating the potential of shaped laser pulses in the synthesis of AuNPs. Systematic manipulation of the laser parameters and experimental conditions provided effective strategies to control the size of Au nanoparticles in strong laser fields. Varying the concentration of polyethylene glycol (PEG45) as a surfactant effectively tuned the size of AuNPs from 3.9 ±0.7nm to 11.0 ±2.4nm, and significantly increased the rate of Au(III) reduction during irradiation. Comparative studies revealed the capability of shaped laser pulses in the generation of smaller and more uniform AuNPs (5.8 ±1.1nm) relative to the other conventional laser irradiation methods (7.2 ±2.9nm). Furthermore, a new laser-assisted approach has been developed for selective formation of triangular Au nanoplates in the absence of any surfactant molecule. This method relies on rapid energy deposition by using shaped, ultra-intense laser pulses to generate Au seeds in aqueous [AuCl4]- solution, and the slow post-irradiation reduction of un-reacted [AuCl4]- species by using H2O2 as a mild reducing agent. Variation of the laser irradiation-time was found as an effective strategy to tune the morphology of Au nanomaterials from nanospheres to triangular nanoplates. The surfactant-free Au nanoplates produced in this research can be readily functionalized with a variety of target molecules or surfactants for desirable applications such as biomedicine. The concept of rapid laser processing followed by in situ chemical reduction can be expanded as a general methodology for high-yield production of nanomaterials, and provides a series of new laser dependent parameters for controlling the nanoparticle formation. / Chemistry

Page generated in 0.0952 seconds