1 |
Role of MTH1 and MYH proteins in genotoxic effects of radiationShakeri Manesh, Sara January 2015 (has links)
Humans are constantly exposed to different types of radiations. It has been suggested that low dose and low dose rate of γ-radiation as well as ultra violet A (UVA) induce oxidative stress in cells that may promote mutations. The mechanisms behind radiation-induced oxidative stress and its relation to genotoxicity and cancer induction are not well understood. In the majority of investigations, the DNA molecule has been studied as the target for mutations, however the results obtained in our group point out that DNA bases in the cytoplasm could also be a significant target. MTH1 and MYH are two of the key proteins of the repair pathway that prevent mutations arising from oxidized DNA bases. In this thesis, we studied the role of MTH1 and MYH in genotoxicity of UVA and γ-radiation. The adaptive response to low dose rates of γ-radiation was also investigated. MTH1 and/or MYH were knockdown in human lymphoblastoid TK6 cells. The clonogenic survival, mutant frequency and chromosomal aberration assays were performed following UVA or γ-radiation exposure. Our results indicated that acute exposure to UVA or γ-radiation affects cell survival and also increases the mutant frequency above the background. The mutant frequency in MTH1 deficient cells was higher than that in wild types after UVA exposure. Following γ-radiation exposure, a higher mutant frequency was observed in the MYH and MTH1 deficient cells, in comparison to either MYH or MTH1 deficient or wild type cells. No dose rate effect of γ-radiation for mutations was observed. An adaptive response to γ-radiation was observed at the mutation level in MCF-10A cells but not at the survival level. In summary, our results suggest that; a) MYH and MTH1 cooperatively protect cells against genotoxic effects of γ-radiation; b) MTH1 protects cells from UVA-induced mutations; c) low dose rates of γ-radiation may induce an adaptive response at the mutation level; d) there is no dose rate effect for γ-radiation at the mutation level. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Manuscript.</p>
|
2 |
The role of MTH1 in ultraviolet radiation-induced mutagenesisFotouhi, Asal January 2015 (has links)
Ultraviolet radiation (UVR) is known to be highly mutagenic. What types of DNA lesions that are induced by different UVR wavelengths are still a matter of debate. UVR induces mutagenesis mostly by the formation of photoproducts and the induction of reactive oxygen species (ROS). ROS can give rise to mutations via oxidation of nucleotides in the DNA or the nucleotide pool. Oxidized nucleotides in the nucleotide pool can thereby be incorporated into the DNA during replication and ultimately give rise to mutations. MTH1 however, dephosphorylates oxidized nucleotides in the nucleotide pool, in particular 8-oxo-dGTP and 2-OH-dATP, and inhibits their incorporation into the DNA.The aim of the present study was to investigate the role of MTH1 in mutagenesis and cytogenetic damage induced by UVR in a human lymphoblastoid TK6 cell line. The clonogenic survival, mutant frequency and micronucleus frequency were measured following exposure to UVA, UVB and UVC in MTH1-knockdown and wild-type TK6 cells. As a biomarker for oxidative damage the level of intracellular and extracellular 8-oxo-dG was measured in TK6 cells exposed to UVA. The mutational spectra of UVA-induced mutations at the thymidine kinase gene in MTH1-knockdown and wild-type TK6 cells were investigated.The results show that MTH1 protects against UVA and UVB mutagenesis significantly. MTH1, however, has been shown to offer no protection against UVR-induced cytogenetic damage and is therefore suggested to mainly inhibit mutagenesis. The mutational spectra show that GC>AT and AT>GC transitions are the dominant mutation types in cells exposed to UVA.In conclusion, MTH1 protects TK6 cells against mutagenesis induced by longer wavelengths of UVR. This indicates that the nucleotide pool is a significant target in mutagenesis for longer wavelengths of UVR. The type of mutations induced by UVA, GC>AT and AT>GC, can be formed by the incorporation of 2-OH-dATP from nucleotide pool into the DNA. UVA is therefore suggested to induce mutations by induction of oxidized nucleotides such as 2-OH-dATP. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.</p>
|
3 |
Investigation of DNA Base Excision Repair in MTH1 Depleted T-cell Acute Lymphoblastic Leukemia cellsMavajian, Zahra January 2018 (has links)
Genomic alterations may initiate cancer development as the consequence of endogenous or exogenous DNA damaging factors. Defects in DNA repair mechanisms may also facilitate cancer progression as well as accumulation of mutations which favor cancer cell survival. However, DNA repair pathways in cancer cells can be considered as their Achilles heel which are possible targets in order to compromise their survival. For instance, it has been demonstrated recently that inhibition of a protein called MTH1 via RNA interference (RNAi) or chemical inhibitors can stop tumor growth and triggers cell death by increasing the load of oxidative DNA damage. MTH1 is a hydrolase which converts 8-oxo-dGTP into 8-oxo-dGMP in order to prevent incorporation of oxidatively damaged nucleotides into DNA. In addition, DNA glycosylases which recognize and remove mismatched or damaged nucleotide pairs in DNA can also participate in repair of 8-oxo-dG, such as MUTYH repairing A:8-oxo-dG pair. The goal of the current study was to investigate the importance of MUTYH activity upon MTH1 depletion. The current study tried to answer whether simultaneous knock-down of MTH1 and MUTYH sensitizes cancer cells to oxidative stress and increases cell death. Both enzymes were simultaneously depleted in T cell acute lymphoblastic leukemia cells using RNAi. Then, we analyzed the efficiency of gene and protein knock-down by quantitative real-time-PCR and western blotting, respectively. Induction of cell death was also assessed by flow cytometric analysis of cell cycle. Afterwards, the effect of the treatments on DNA repair pathways was studied by analysis of gene expression of several DNA glycosylases and DNA polymerases using qRT-PCR. The results showed that concurrent depletion of both enzymes led to synergistic induction of cell death. Down-regulation of NEIL1 DNA glycosylase as well as POLQ and POLH DNA polymerases mRNAs adapted their DNA repair pathways to cope with induced damages under these conditions. Finally, the results of this study suggest that dual suppression of MTH1 and MUTYH may provide a new approach to reduce survival of T cell ALL.
|
Page generated in 0.0174 seconds