• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 357
  • 133
  • 75
  • 52
  • 8
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 805
  • 500
  • 171
  • 165
  • 102
  • 101
  • 99
  • 81
  • 80
  • 80
  • 73
  • 73
  • 71
  • 69
  • 67
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

A Numerical Study of Water Injection on Transonic Compressor Rotor Performance

Szabo, Istvan 13 November 2008 (has links)
No description available.
112

Liquid Holdup in Vertical Air/Water Multiphase Flow with Surfactant

Akor, Innocent Collins January 2013 (has links)
No description available.
113

Critical properties of multicomponent hydrocarbon systems of known composition /

Etter, Doyle Owen January 1961 (has links)
No description available.
114

Reaction diffusion in the silver-zinc system /

Pfouts, William Robert January 1973 (has links)
No description available.
115

Reaction diffusion in the silver-zinc system /

Pfouts, William Robert January 1973 (has links)
No description available.
116

NUMERICAL STUDY OF 2D PARTICLE FLOW IN A DUCT

Hayati, Abolfazl January 2012 (has links)
No description available.
117

A CFD strategy to retrofit an anaerobic digester to improve mixing performance in wastewater treatment

Dapelo, Davide, Bridgeman, John 25 November 2020 (has links)
Yes / To date, mixing design practice in anaerobic digestion has focussed on biogas production, but no adequate consideration has been given to energy efficiency. A coherent, comprehensive and generalized strategy based on computational fluid dynamics (CFD) modelling is proposed to improve mixing efficiency of a full-scale, unconfined gas-mixed digester for wastewater treatment. The model consists of an Euler-Lagrange (EL) model where biogas bubbles are modelled as the Eulerian dispersed phase, and non-Newtonian sludge as the Lagrangian continuous phase. Robustness tests show that mixing predictions are independent of bubble size. The CFD strategy comprises the assessment of different mixing geometries and a range of input gas flow rates. Quantitative results show that simple retrofitting measures are able to achieve a significant improvement in the degree of mixing with reduced mixing times, and consequently recommendations for best mixing geometry and gas flow rate are given. A generalization to a generic digester is discussed in a form that is readily usable by professionals and consultants.
118

Multiphase Voltage Regulator Modules with Magnetic Integration to Power Microprocessors

Xu, Peng 15 March 2002 (has links)
Advances in very large scale integration (VLSI) technologies impose challenges for voltage regulator modules (VRM) to deliver high-quality power to modern microprocessors. As an enabling technology, multiphase converters have become the standard practice in VRM industry. The primary objectives of this dissertation are to develop advanced topologies and innovative integrated magnetics for high-efficiency, high-power-density and fast-transient VRMs. The optimization of multiphase VRMs has also been addressed. Today's multiphase VRMs are almost universally based on the buck topology. With increased input voltage and decreased output voltage, the multiphase buck converter suffers from a very small duty cycle and cannot achieve a desirable efficiency. The multiphase tapped-inductor buck converter is one of the simplest topologies with a decent duty cycle. However, the leakage inductance of its tapped inductors causes a severe voltage spike problem. An improved topology, named the multiphase coupled-buck converter, is proposed. This innovative topology enables the use of a larger duty cycle with clamped device voltage and recovered leakage energy. Under the same transient responses, the multiphase coupled-buck converter has a significantly better efficiency than the multiphase buck converter. By integrating all the magnetic components into a single core, in which the windings are wound around the center leg and the air gaps are placed on the two outer legs, it is possible for multiphase VRMs to further improve efficiency and cut the size and cost. Unfortunately, this structure suffers from an undesirable core structure and huge leakage inductance. An improved integrated magnetic structure is proposed to overcome these limitations. All the windings are wound around the two outer legs and the air gap is placed on the center leg. The improved structure also features the flux ripple cancellation in the center leg and strongly reverse-coupled inductors. Both core loss and winding loss are reduced. The steady-state current ripples can be reduced without compromising the transient responses. The overall efficiency of the converter is improved. The input inductor can also be integrated in the improved integrated magnetic structure. Currently, selecting the appropriate number of channels for multiphase VRMs is still an empirical trial-and-error process. This dissertation proposes a methodology for determining the right number of channels for the optimal multiphase design. The problem formulation and general method for the optimization are proposed. Two examples are performed step by step to demonstrate the proposed optimization methodology. Both are focused on typical VRM 9.0 designs for the latest Pentium 4® microprocessors and their results are compared with the industry practice. / Ph. D.
119

Direct numerical simulation and two-fluid modeling of multi-phase bubbly flows

Biswas, Souvik 03 May 2007 (has links)
Results from direct numerical simulations (DNS) of multiphase bubbly flows in vertical and horizontal channels were compared to averaged models of multiphase flows (two-fluid model etc.). The data from the direct numerical simulation were also used to calibrate and improve the averaged models. Steady state laminar flow in a vertical channel was analyzed first. Results from direct numerical simulations are compared with prediction of the steady-state two-fluid model of Antal, Lahey, and Flaherty (1991). The simulations are done assuming a two-dimensional system and the model coefficients are adjusted slightly to match the data for upflow. The model is then tested by comparisons with different values of flow rate and gravity, as well as down flow. Results agree reasonably in the middle of the channel. However, for upflow, model performs poorly near the no-slip wall. To better understand the flow with rising bubbles hugging the no-slip wall, detailed direct numerical simulations of the problem were performed in three dimensions. Deformability of the bubbles was found to play a significant role in the flow structure and averaged flow rate. Finally, the transient buoyancy driven motion of two-dimensional bubbles across a domain bounded by two horizontal walls is studied by. The bubbles are initially released next to the lower wall and as they rise, they disperse. Eventually all the bubbles collect at the top wall. The goal of the study is to examine how a simple one-dimensional model for the averaged void fraction captures the unsteady bubble motion. By using void fraction dependent velocities, where the exact dependency is obtained from simulations of homogeneous bubbly flows, the overall dispersion of the bubbles is predicted. Significant differences remain, however. Results suggest that bubble dispersion by the bubble induced liquid velocity must be included, and by using a simple model for the bubble dispersion improved agreement is found.
120

Multiphase Layout Optimization for Fiber Reinforced Composites applying a Damage Formulation

Kato, Junji, Ramm, Ekkehard 03 June 2009 (has links) (PDF)
The present study addresses an optimization strategy for maximizing the structural ductility of Fiber Reinforced Concrete (FRC) with long textile fibers. Due to material brittleness of both concrete and fiber in addition to complex interfacial behavior between above constituents the structural response of FRC is highly nonlinear. Consideration of this material nonlinearity including interface is mandatory to deal with this kind of composite. In the present contribution three kinds of optimization strategies based on a damage formulation are described. The performance of the proposed method is demonstrated by a series of numerical examples; it is verified that the ductility can be substantially improved.

Page generated in 0.0274 seconds