Spelling suggestions: "subject:"achine 1translation"" "subject:"achine atranslation""
231 |
La Traduction automatique statistique dans un contexte multimodal / Statistical machine translation in a multimodal contextAfli, Haithem 07 July 2014 (has links)
Les performances des systèmes de traduction automatique statistique dépendent de la disponibilité de textes parallèles bilingues, appelés aussi bitextes. Cependant, les textes parallèles librement disponibles sont aussi des ressources rares : la taille est souvent limitée, la couverture linguistique insuffisante ou le domaine des textes n’est pas approprié. Il y a relativement peu de paires de langues pour lesquelles des corpus parallèles de tailles raisonnables sont disponibles pour certains domaines. L’une des façons pour pallier au manque de données parallèles est d’exploiter les corpus comparables qui sont plus abondants. Les travaux précédents dans ce domaine n’ont été appliqués que pour la modalité texte. La question que nous nous sommes posée durant cette thèse est de savoir si un corpus comparable multimodal permet d’apporter des solutions au manque de données parallèles dans le domaine de la traduction automatique.Dans cette thèse, nous avons étudié comment utiliser des ressources provenant de différentes modalités (texte ou parole) pour le développement d’un système de traduction automatique statistique. Une première partie des contributions consisteà proposer une technique pour l’extraction des données parallèles à partir d’un corpus comparable multimodal (audio et texte). Les enregistrements sont transcrits avec un système de reconnaissance automatique de la parole et traduits avec unsystème de traduction automatique. Ces traductions sont ensuite utilisées comme requêtes d’un système de recherche d’information pour sélectionner des phrases parallèles sans erreur et générer un bitexte. Dans la deuxième partie des contributions, nous visons l’amélioration de notre méthode en exploitant les entités sous-phrastiques créant ainsi une extension à notre système en vue de générer des segments parallèles. Nous améliorons aussi le module de filtrage. Enfin, nous présentons plusieurs manières d’aborder l’adaptation des systèmes de traduction avec les données extraites.Nos expériences ont été menées sur les données des sites web TED et Euronews qui montrent la faisabilité de nos approches. / The performance of Statistical Machine Translation Systems statistics depends on the availability of bilingual parallel texts, also known as bitexts. However, freely available parallel texts are also a sparse resource : the size is often limited, languistic coverage insufficient or the domain of texts is not appropriate. There are relatively few pairs of languages for which parallel corpora sizes are available for some domains. One way to overcome the lack of parallel data is to exploit comparable corpus that are more abundant. Previous work in this area have been applied for the text modality. The question we asked in this thesis is : can comparable multimodal corpus allows us to make solutions to the lack of parallel data in machine translation? In this thesis, we studied how to use resources from different modalities (text or speech) for the development of a Statistical machine translation System. The first part of the contributions is to provide a method for extracting parallel data from a comparable multimodal corpus (text and audio). The audio data are transcribed with an automatic speech recognition system and translated with a machine translation system. These translations are then used as queries to select parallel sentences and generate a bitext. In the second part of the contribution, we aim to improve our method to exploit the sub-sentential entities creating an extension of our system to generate parallel segments. We also improve the filtering module. Finally, we présent several approaches to adapt translation systems with the extracted data. Our experiments were conducted on data from the TED and Euronews web sites which show the feasibility of our approaches.
|
232 |
Uma abordagem híbrida relacional para a desambiguação lexical de sentido na tradução automática / A hybrid relational approach for word sense disambiguation in machine translationLucia Specia 28 September 2007 (has links)
A comunicação multilíngue é uma tarefa cada vez mais imperativa no cenário atual de grande disseminação de informações em diversas línguas. Nesse contexto, são de grande relevância os sistemas de tradução automática, que auxiliam tal comunicação, automatizando-a. Apesar de ser uma área de pesquisa bastante antiga, a Tradução Automática ainda apresenta muitos problemas. Um dos principais problemas é a ambigüidade lexical, ou seja, a necessidade de escolha de uma palavra, na língua alvo, para traduzir uma palavra da língua fonte quando há várias opções de tradução. Esse problema se mostra ainda mais complexo quando são identificadas apenas variações de sentido nas opções de tradução. Ele é denominado, nesse caso, \"ambigüidade lexical de sentido\". Várias abordagens têm sido propostas para a desambiguação lexical de sentido, mas elas são, em geral, monolíngues (para o inglês) e independentes de aplicação. Além disso, apresentam limitações no que diz respeito às fontes de conhecimento que podem ser exploradas. Em se tratando da língua portuguesa, em especial, não há pesquisas significativas voltadas para a resolução desse problema. O objetivo deste trabalho é a proposta e desenvolvimento de uma nova abordagem de desambiguação lexical de sentido, voltada especificamente para a tradução automática, que segue uma metodologia híbrida (baseada em conhecimento e em córpus) e utiliza um formalismo relacional para a representação de vários tipos de conhecimentos e de exemplos de desambiguação, por meio da técnica de Programação Lógica Indutiva. Experimentos diversos mostraram que a abordagem proposta supera abordagens alternativas para a desambiguação multilíngue e apresenta desempenho superior ou comparável ao do estado da arte em desambiguação monolíngue. Adicionalmente, tal abordagem se mostrou efetiva como mecanismo auxiliar para a escolha lexical na tradução automática estatística / Crosslingual communication has become a very imperative task in the current scenario with the increasing amount of information dissemination in several languages. In this context, machine translation systems, which can facilitate such communication by providing automatic translations, are of great importance. Although research in Machine Translation dates back to the 1950\'s, the area still has many problems. One of the main problems is that of lexical ambiguity, that is, the need for lexical choice when translating a source language word that has several translation options in the target language. This problem is even more complex when only sense variations are found in the translation options, a problem named \"sense ambiguity\". Several approaches have been proposed for word sense disambiguation, but they are in general monolingual (for English) and application-independent. Moreover, they have limitations regarding the types of knowledge sources that can be exploited. Particularly, there is no significant research aiming to word sense disambiguation involving Portuguese. The goal of this PhD work is the proposal and development of a novel approach for word sense disambiguation which is specifically designed for machine translation, follows a hybrid methodology (knowledge and corpus-based), and employs a relational formalism to represent various kinds of knowledge sources and disambiguation examples, by using Inductive Logic Programming. Several experiments have shown that the proposed approach overcomes alternative approaches in multilingual disambiguation and achieves higher or comparable results to the state of the art in monolingual disambiguation. Additionally, the approach has shown to effectively assist lexical choice in a statistical machine translation system
|
233 |
Déploiement automatique d’une application de routage téléphonique d’une langue source vers une langue cibleTremblay, Jérôme 08 1900 (has links)
No description available.
|
234 |
Exploring Contextual Information in Neural Machine Translation / Exploring Contextual Information in Neural Machine TranslationJon, Josef January 2019 (has links)
Tato práce se zabývá zapojením mezivětného kontextu v neuronovém strojovém překladu (NMT). Dnešní běžné NMT systémy překládají jednu zdrojovou větu na jednu cílovou větu, bez jakéhokoliv ohledu na okolní text. Tento přístup je nedostačující a neodpovídá způsobu práce lidských překladatelů. Pro mnoho jazykových párů je dnes za splnění určitých (přísných) podmínek výstup NMT nerozeznatelný od lidského překladu. Jedna z těchto podmínek je, že hodnotitelé skórují přeložené věty nezávisle, bez znalosti kontextu. Při hodnocení celých dokumentů je výstup NMT stále hodnocen hůře, než lidský překlad, i v případech, kdy byl na úrovni jednotlivých vět preferován. Tato zjištění jsou motivací pro výzkum zapojení kontextu na úrovni dokumentu v NMT, je totiž možné, že na úrovni vět již není mnoho prostoru ke zlepšení, alespoň pro jazykové páry a domény bohaté na trénovací data. Tato práce shrnuje současné přístupy zapojení kontextu do překladu, několik z nich je implementováno a vyhodnoceno v rámci obecné překladové kvality i na překladu specifických fenoménů souvisejících s kontextem. Pro zhodnocení kvality jednotlivých systému byla ručně vytvořena testovací sada pro překlad z anglického do českého jazyka.
|
235 |
Exploitation d’informations riches pour guider la traduction automatique statistique / Complex Feature Guidance for Statistical Machine TranslationMarie, Benjamin 25 March 2016 (has links)
S'il est indéniable que de nos jours la traduction automatique (TA) facilite la communication entre langues, et plus encore depuis les récents progrès des systèmes de TA statistiques, ses résultats sont encore loin du niveau de qualité des traductions obtenues avec des traducteurs humains.Ce constat résulte en partie du mode de fonctionnement d'un système de TA statistique, très contraint sur la nature des modèles qu'il peut utiliser pour construire et évaluer de nombreuses hypothèses de traduction partielles avant de parvenir à une hypothèse de traduction complète. Il existe cependant des types de modèles, que nous qualifions de « complexes », qui sont appris à partir d'informations riches. Si un enjeu pour les développeurs de systèmes de TA consiste à les intégrer lors de la construction initiale des hypothèses de traduction, cela n'est pas toujours possible, car elles peuvent notamment nécessiter des hypothèses complètes ou impliquer un coût de calcul très important. En conséquence, de tels modèles complexes sont typiquement uniquement utilisés en TA pour effectuer le reclassement de listes de meilleures hypothèses complètes. Bien que ceci permette dans les faits de tirer profit d'une meilleure modélisation de certains aspects des traductions, cette approche reste par nature limitée : en effet, les listes d'hypothèses reclassées ne représentent qu'une infime partie de l'espace de recherche du décodeur, contiennent des hypothèses peu diversifiées, et ont été obtenues à l'aide de modèles dont la nature peut être très différente des modèles complexes utilisés en reclassement.Nous formulons donc l'hypothèse que de telles listes d'hypothèses de traduction sont mal adaptées afin de faire s'exprimer au mieux les modèles complexes utilisés. Les travaux que nous présentons dans cette thèse ont pour objectif de permettre une meilleure exploitation d'informations riches pour l'amélioration des traductions obtenues à l'aide de systèmes de TA statistique.Notre première contribution s'articule autour d'un système de réécriture guidé par des informations riches. Des réécritures successives, appliquées aux meilleures hypothèses de traduction obtenues avec un système de reclassement ayant accès aux mêmes informations riches, permettent à notre système d'améliorer la qualité de la traduction.L'originalité de notre seconde contribution consiste à faire une construction de listes d'hypothèses par passes multiples qui exploitent des informations dérivées de l'évaluation des hypothèses de traduction produites antérieurement à l'aide de notre ensemble d'informations riches. Notre système produit ainsi des listes d'hypothèses plus diversifiées et de meilleure qualité, qui s'avèrent donc plus intéressantes pour un reclassement fondé sur des informations riches. De surcroît, notre système de réécriture précédent permet d'améliorer les hypothèses produites par cette deuxième approche à passes multiples.Notre troisième contribution repose sur la simulation d'un type d'information idéalisé parfait qui permet de déterminer quelles parties d'une hypothèse de traduction sont correctes. Cette idéalisation nous permet d'apporter une indication de la meilleure performance atteignable avec les approches introduites précédemment si les informations riches disponibles décrivaient parfaitement ce qui constitue une bonne traduction. Cette approche est en outre présentée sous la forme d'une traduction interactive, baptisée « pré-post-édition », qui serait réduite à sa forme la plus simple : un système de TA statistique produit sa meilleure hypothèse de traduction, puis un humain apporte la connaissance des parties qui sont correctes, et cette information est exploitée au cours d'une nouvelle recherche pour identifier une meilleure traduction. / Although communication between languages has without question been made easier thanks to Machine Translation (MT), especially given the recent advances in statistical MT systems, the quality of the translations produced by MT systems is still well below the translation quality that can be obtained through human translation. This gap is partly due to the way in which statistical MT systems operate; the types of models that can be used are limited because of the need to construct and evaluate a great number of partial hypotheses to produce a complete translation hypothesis. While more “complex” models learnt from richer information do exist, in practice, their integration into the system is not always possible, would necessitate a complete hypothesis to be computed or would be too computationally expensive. Such features are therefore typically used in a reranking step applied to the list of the best complete hypotheses produced by the MT system.Using these features in a reranking framework does often provide a better modelization of certain aspects of the translation. However, this approach is inherently limited: reranked hypothesis lists represent only a small portion of the decoder's search space, tend to contain hypotheses that vary little between each other and which were obtained with features that may be very different from the complex features to be used during reranking.In this work, we put forward the hypothesis that such translation hypothesis lists are poorly adapted for exploiting the full potential of complex features. The aim of this thesis is to establish new and better methods of exploiting such features to improve translations produced by statistical MT systems.Our first contribution is a rewriting system guided by complex features. Sequences of rewriting operations, applied to hypotheses obtained by a reranking framework that uses the same features, allow us to obtain a substantial improvement in translation quality.The originality of our second contribution lies in the construction of hypothesis lists with a multi-pass decoding that exploits information derived from the evaluation of previously translated hypotheses, using a set of complex features. Our system is therefore capable of producing more diverse hypothesis lists, which are globally of a better quality and which are better adapted to a reranking step with complex features. What is more, our forementioned rewriting system enables us to further improve the hypotheses produced with our multi-pass decoding approach.Our third contribution is based on the simulation of an ideal information type, designed to perfectly identify the correct fragments of a translation hypothesis. This perfect information gives us an indication of the best attainable performance with the systems described in our first two contributions, in the case where the complex features are able to modelize the translation perfectly. Through this approach, we also introduce a novel form of interactive translation, coined "pre-post-editing", under a very simplified form: a statistical MT system produces its best translation hypothesis, then a human indicates which fragments of the hypothesis are correct, and this new information is then used during a new decoding pass to find a new best translation.
|
236 |
Machine Translation (MT) - History, Theory, Problems and UsageRiedel, Marion, Schwarze, Tino 11 May 2001 (has links)
The presentation outlines the historical development of machine translation.
Standard MT problems are listed and partly discussed.
|
237 |
Machine Translation: A Theoretical and Practical IntroductionRiedel, Marion 08 May 2002 (has links)
The paper presents the basics and the development
of Machine Translation and explains different
methods for evaluating translation machines on the
base of a detailed example. / Die im Rahmen des Seminars "Language and Computers"
der englischen Sprachwissenschaft entstandene Arbeit
behandelt die Grundlagen und die Entwicklung der
Maschinellen Übersetzung und gibt anhand eines
ausführlichen Beispiels Einblick in Methoden zur
Evaluation von Übersetzungsmaschinen.
|
238 |
Lingvistické otázky ve strojovém překladu mezi češtinou a ruštinou / Linguistic Issues in Machine Translation between Czech and RussianKlyueva, Natalia January 2015 (has links)
In this thesis we analyze machine translation between Czech and Russian languages from the perspective of a linguist. We work with two types of Machine Translation systems - rule-based (TectoMT) and statistical (Moses). We experiment with different setups of these two systems in order to achieve the best possible quality. One of the questions we address in our work is whether relatedness of the discussed languages has some impact on machine translation. We explore the output of our two experimental systems and two commercial systems: PC Translator and Google Translate. We make a linguistically-motivated classification of errors for the language pair and describe each type of error in detail, analyzing whether it occurred due to some difference between Czech and Russian or is it caused by the system architecture. We then compare the usage of some specific linguistic phenomena in the two languages and state how the individual systems cope with mismatches. For some errors, we suggest ways to improve them and in several cases we implement those suggestions. In particular, we focus on one specific error type - surface valency. We research the mismatches between Czech and Russian valency, extract a lexicon of surface valency frames, incorporate the lexicon into the TectoMT translation pipeline and present...
|
239 |
Vyhlídky překladatelské profese v éře moderních technologií: interdisciplinární pohled / Prospects of Human Translation in the Era of Modern Technology: An Interdisciplinary PerspectiveHrách, Ondřej January 2020 (has links)
Modern technology affects all aspects of human life, and translation is not an exception. The development of translation technology -computer-assisted translation (CAT) and machine translation (MT)- is causing shifts in professional competencies and significant changes in the work of human translators, who are concerned about the future of their profession. Furthermore, insufficient collaboration between translators and technology developers leads to dissatisfaction with translation tools, contempt for machine translation, and mutual misunderstandings. The aim of this master's thesis is to promote the dialogue between professional translators and translation technology experts. First, a questionnaire survey is conducted among translators; then, its results are consulted with experts in translation technology. It is confirmed that the inevitable changes do not mean that the profession will become obsolete, but rather transformed. In addition, there are various possibilities for collaboration between translators and developers. However, for this collaboration to be as effective as possible, it will be necessary to address the differences between the views of both sides.
|
240 |
Generierung von natürlichsprachlichen Texten aus semantischen Strukturen im Prozeß der maschinellen Übersetzung - Allgemeine Strukturen und AbbildungenRosenpflanzer, Lutz, Karl, Hans-Ulrich 14 December 2012 (has links)
0 VORWORT
Bei der maschinellen Übersetzung natürlicher Sprache dominieren mehrere Probleme. Man hat es immer mit sehr großen Datenmengen zu tun. Auch wenn man nur einen kleinen Text übersetzen will, ist diese Aufgabe in umfänglichen Kontext eingebettet, d.h. alles Wissen über Quell- und Zielsprache muß - in möglichst formalisierter Form - zur Verfügung stehen. Handelt es sich um gesprochenes Wort treten Spracherkennungs- und Sprachausgabeaufgaben sowie harte Echtzeitforderungen hinzu. Die Komplexität des Problems ist - auch unter Benutzung moderner Softwareentwicklungskonzepte - für jeden, der eine Implementation versucht, eine nicht zu unterschätzende Herausforderung.
Ansätze, die die Arbeitsprinzipien und Methoden der Informatik konsequent nutzen, stellen ihre Ergebnisse meist nur prototyisch für einen sehr kleinen Teil der Sprache -etwa eine Phrase, einen Satz bzw. mehrere Beispielsätze- heraus und folgern mehr oder weniger induktiv, daß die entwickelte Lösung auch auf die ganze Sprache erfolgreich angewendet werden kann, wenn man nur genügend „Lemminge“ hat, die nach allen Seiten ausschwärmend, die „noch notwendigen Routinearbeiten“ schnell und bienenfleißig ausführen könnten.:0 Vorwort S. 2
1 Allgemeiner Ablauf der Generierung S. 3
1.1 AUFGABE DER GENERIERUNG S. 3
1.2 EINORDNUNG DER GENERIERUNG IN DIE MASCHINELLE ÜBERSETZUNG S.4
1.3 REALISIERUNG S. 4
1.4 MORPHOLOGISCHE GENERIERUNG S.6
2 Strukturen und Abbildungen S. 8
2.1 UNIVERSELLE STRUKTUR: DEFINITION VON GRAPHEN S.8
2.2 FORMALISIERUNG SPEZIELLER SEMANTISCHER STRUKTUREN ALS GRAPHEN S.9
2.3 ABBILDUNG VON STRUKTUREN S.11
2.3.1 Strukturtyperhaltende Funktionen S. 12
2.3.2 Strukturtypverändernde Funktionen S. 19
2.3.3 Komplexe Funktionen S. 20
2.3.4 Abbildung eines gesamten Generierungsprozesses S. 21
4 Beispiel: Generierung von Texten aus prädikatenlogischen Ausdrücken (inkrementeller Algorithmus) S. 23
4.1 ABLAUF S.23
4.2 BEISPIELE VON REGELSTRUKTUREN S.27
5 Zusammenfassung S. 28
6 Quellenverzeichnis S. 30
|
Page generated in 0.0825 seconds