• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Resource allocation in cellular Machine-to-Machine networks

Alhussien, Nedaa 06 December 2021 (has links)
With the emergence of the Internet-of-Things (IoT), communication networks have evolved toward autonomous networks of intelligent devices capable of communicating without direct human intervention. This is known as Machine-to-Machine (M2M) communications. Cellular networks are considered one of the main technologies to support the deployment of M2M communications as they provide extended wireless connectivity and reliable communication links. However, the characteristics and Quality-of-Service (QoS) requirements of M2M communications are distinct from those of conventional cellular communications, also known as Human-to-Human (H2H) communications, that cellular networks were originally designed for. Thus, enabling M2M communications poses many challenges in terms of interference, congestion, spectrum scarcity and energy efficiency. The primary focus is on the problem of resource allocation that has been the interest of extensive research effort due to the fact that both M2M and H2H communications coexist in the cellular network. This requires that radio resources be allocated such that the QoS requirements of both groups are satisfied. In this work, we propose three models to address this problem. In the first model, a two-phase resource allocation algorithm for H2H/M2M coexistence in cellular networks is proposed. The goal is to meet the QoS requirements of H2H traffic and delay-sensitive M2M traffic while ensuring fairness for the delay-tolerant M2M traffic. Simulation results are presented which show that the proposed algorithm is able to balance the demands of M2M and H2H traffic, meet their diverse QoS requirements, and ensure fairness for delay-tolerant M2M traffic. With the growing number of Machine-Type Communication Devices (MTCDs) the problem of spectrum scarcity arises. Hence, Cognitive Radio (CR) is the focus of the second model where clustered Cognitive M2M (CM2M) communications underlaying cellular networks is proposed. In this model, MTCDs are grouped in clusters based on their spatial location and communicate with the Base Station (BS) via Machine-Type Communication Gateways (MTCGs). An underlay CR scheme is implemented where the MTCDs within a cluster share the spectrum of the neighbouring Cellular User Equipment (CUE). A joint resource-power allocation problem is formulated to maximize the sum-rate of the CUE and clustered MTCDs while adhering to MTCD minimum data rate requirements, MTCD transmit power limits, and CUE interference constraints. Simulation results are presented which show that the proposed scheme significantly improves the sum-rate of the network compared to other schemes while satisfying the constraints. Due to the limited battery capacity of MTCDs and diverse QoS requirements of both MTCDs and CUE, Energy Efficiency (EE) is critical to prolonging network lifetime to ensure uninterrupted and reliable data transmission. The third model investigates the power allocation problem for energy-efficient CM2M communications underlaying cellular networks. Underlay CR is employed to manage the coexistence of MTCDs and CUE and exploit spatial spectrum opportunities. Two power allocation problems are proposed where the first targets MTCD power consumption minimization while the second considers MTCD EE maximization subject to MTCD transmit power constraints, MTCD minimum data rate requirements, and CUE interference limits. Simulation results are presented which indicate that the proposed algorithms provide MTCD power allocation with lower power consumption and higher EE than the (Equal Power Allocation) EPA scheme while satisfying the constraints. / Graduate
2

Bootstrapping Secure Sensor Networks in the Internet of Things / Konfiguration av säkra sensornätverk i sakernas internet

Edman, Johan January 2022 (has links)
The Internet of Things has become an integral part of modern society and continues to grow and evolve. The devices are expected to operate in various conditions and environments while securely transmitting sensor data and keeping low manufacturing costs. Security for the Internet of Things is still in its infancy and a serious concern. Although there are several schemes and protocols for securing communication over insecure channels, they are deemed too costly to perform on these constrained devices. As a result, substantial effort has been committed to developing secure protocols and adapting existing ones to be more lightweight. What remains seemingly absent in protocol specifications and key management schemes, however, is how to bootstrap and secure the initial communication. While it is possible to use pre-shared keys, such solutions are problematic with security and administrative overhead in mind. When the sensor networks grow in scale, with an increasing number of devices, this becomes especially problematic as autonomous deployment becomes necessary. By reviewing proposed bootstrapping techniques and evaluating suitable candidates, this work aims to provide an overview of approaches, their trade-offs and feasibility. Results of the study show that advancements in high-speed, lightweight and elliptic curve implementations have made public-key cryptography a viable option even on the very constrained platform, with session keys established within the minute. When analysing the node’s capability to generate randomness, a cornerstone of cryptographic security, initial findings indicate that it is not well equipped for the task. Consequently, sources of entropy must be evaluated thoroughly in resource-constrained devices before use and dedicated hardware for randomness might be necessary for the most constrained nodes if any security is to be guaranteed. / Sakernas internet har blivit en central del i dagens samhälle och fortsätter att utvecklas och integreras allt mer. Enheterna förväntas fungera i många typer av miljöer och förhållanden samtidigt som de ska skicka data säkert och vara billiga att producera. Trots att utvecklingen gått framåt, är säkerheten fortfarande väldigt rudimentär och i behov av ytterligare utveckling. För vanliga nätverk finns det många väletablerade protokoll för att säkra kommunikation, men dessa anses oftast vara för komplicerade för de resursbegränsade enheterna. Till följd av detta har forskning inriktats på att effektivisera existerande protokoll men även på att utveckla enklare varianter. Det som fortfarande kvarstår som ett problem och ofta inte diskuteras, är hur den initiala distributionen av kryptografiska nycklar ska genomföras. Att använda sig utav förinstallerade nycklar är en möjlighet, men det brukar oftast bli problematiskt utifrån säkerhet och administrering när sensornätverken växer i storlek. Genom att granska och utvärdera föreslagna metoder för initial konfiguration av sensornätverk, ämnar detta arbete att ge en översikt i vilka olika metoder som finns tillgängliga och deras lämplighet. Resultat från arbetet visar att tack vare framsteg inom elliptisk kurvkryptografi är publik nyckelkryptografi ett rimligt alternativ att använda, då en sessionsnyckel kan etableras inom loppet av en minut. Vid utvärdering av enheternas förmåga att generera slumptal visar initiala resultat däremot att A/D-omvandlaren inte är en lämplig källa för detta då dess entropi är låg och genererad slumpdata har en dålig fördelning och hög upprepning. Det går därför att dra slutsatsen att om någon nivå av kryptografisk säkerhet ska erhållas, så måste källor till entropi utvärderas noggrant. De resursbegränsade enheterna kan även ha ett behov av dedikerad hårdvara för att generera slumptal.
3

Reduced Fuel Emissions through Connected Vehicles and Truck Platooning

Brummitt, Paul D 01 August 2022 (has links)
Vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication enable the sharing, in real time, of vehicular locations and speeds with other vehicles, traffic signals, and traffic control centers. This shared information can help traffic to better traverse intersections, road segments, and congested neighborhoods, thereby reducing travel times, increasing driver safety, generating data for traffic planning, and reducing vehicular pollution. This study, which focuses on vehicular pollution, used an analysis of data from NREL, BTS, and the EPA to determine that the widespread use of V2V-based truck platooning—the convoying of trucks in close proximity to one another so as to reduce air drag across the convoy—could eliminate 37.9 million metric tons of CO2 emissions between 2022 and 2026.
4

Design and Performance Analysis of Access Control Mechanisms for Massive Machine-to-Machine Communications in Wireless Cellular Networks

Tello Oquendo, Luis Patricio 10 September 2018 (has links)
En la actualidad, la Internet de las Cosas (Internet of Things, IoT) es una tecnología esencial para la próxima generación de sistemas inalámbricos. La conectividad es la base de IoT, y el tipo de acceso requerido dependerá de la naturaleza de la aplicación. Uno de los principales facilitadores del entorno IoT es la comunicación machine-to-machine (M2M) y, en particular, su enorme potencial para ofrecer conectividad ubicua entre dispositivos inteligentes. Las redes celulares son la elección natural para las aplicaciones emergentes de IoT y M2M. Un desafío importante en las redes celulares es conseguir que la red sea capaz de manejar escenarios de acceso masivo en los que numerosos dispositivos utilizan comunicaciones M2M. Por otro lado, los sistemas celulares han experimentado un tremendo desarrollo en las últimas décadas: incorporan tecnología sofisticada y nuevos algoritmos para ofrecer una amplia gama de servicios. El modelado y análisis del rendimiento de estas redes multiservicio es también una tarea desafiante que podría requerir un gran esfuerzo computacional. Para abordar los desafíos anteriores, nos centramos en primer lugar en el diseño y la evaluación de las prestaciones de nuevos mecanismos de control de acceso para hacer frente a las comunicaciones masivas M2M en redes celulares. Posteriormente nos ocupamos de la evaluación de prestaciones de redes multiservicio y proponemos una nueva técnica analítica que ofrece precisión y eficiencia computacional. Nuestro principal objetivo es proporcionar soluciones para aliviar la congestión en la red de acceso radio cuando un gran número de dispositivos M2M intentan conectarse a la red. Consideramos los siguientes tipos de escenarios: (i) los dispositivos M2M se conectan directamente a las estaciones base celulares, y (ii) forman grupos y los datos se envían a concentradores de tráfico (gateways) que les proporcionan acceso a la infraestructura. En el primer escenario, dado que el número de dispositivos añadidos a la red aumenta continuamente, esta debería ser capaz de manejar el considerable incremento en las solicitudes de acceso. El 3rd Generation Partnership Project (3GPP) ha propuesto el access class barring (ACB) como una solución práctica para el control de congestión en la red de acceso radio y la red troncal. El ajuste correcto de los parámetros de ACB de acuerdo con la intensidad del tráfico es crítico, pero cómo hacerlo de forma dinámica y autónoma es un problema complejo cuya solución no está recogida en las especificaciones del 3GPP. Esta tesis doctoral contribuye al análisis del rendimiento y al diseño de nuevos algoritmos que implementen efectivamente este mecanismo, y así superar los desafíos introducidos por las comunicaciones masivas M2M. En el segundo escenario, dado que la heterogeneidad de los dispositivos IoT y las arquitecturas celulares basadas en hardware imponen desafíos aún mayores para permitir una comunicación flexible y eficiente en los sistemas inalámbricos 5G, esta tesis doctoral también contribuye al diseño de software-defined gateways (SD-GWs) en una nueva arquitectura propuesta para redes inalámbricas definidas por software que se denomina SoftAir. Esto permite manejar tanto un gran número de dispositivos como el volumen de datos que estarán vertiendo en la red. Otra contribución de esta tesis doctoral es la propuesta de una técnica novedosa para el análisis de prestaciones de redes multiservicio de alta capacidad que se basa en un nuevo enfoque del modelizado analítico de sistemas que operan a diferentes escalas temporales. Este enfoque utiliza el análisis del transitorio de una serie de subcadenas absorbentes y lo denominamos absorbing Markov chain approximation (AMCA). Nuestros resultados muestran que para un coste computacional dado, AMCA calcula los parámetros de prestaciones habituales de un sistema con mayor precisión, en comparación con los resultados obtenidos por otr / Nowadays, Internet of Things (IoT) is an essential technology for the upcoming generation of wireless systems. Connectivity is the foundation for IoT, and the type of access required will depend on the nature of the application. One of the leading facilitators of the IoT environment is machine-to-machine (M2M) communication, and particularly, its tremendous potential to offer ubiquitous connectivity among intelligent devices. Cellular networks are the natural choice for emerging IoT and M2M applications. A major challenge in cellular networks is to make the network capable of handling massive access scenarios in which myriad devices deploy M2M communications. On the other hand, cellular systems have seen a tremendous development in recent decades; they incorporate sophisticated technology and algorithms to offer a broad range of services. The modeling and performance analysis of these large multi-service networks is also a challenging task that might require high computational effort. To address the above challenges, we first concentrate on the design and performance evaluation of novel access control schemes to deal with massive M2M communications. Then, we focus on the performance evaluation of large multi-service networks and propose a novel analytical technique that features accuracy and computational efficiency. Our main objective is to provide solutions to ease the congestion in the radio access or core network when massive M2M devices try to connect to the network. We consider the following two types of scenarios: (i) massive M2M devices connect directly to cellular base stations, and (ii) they form clusters and the data is forwarded to gateways that provide them with access to the infrastructure. In the first scenario, as the number of devices added to the network is constantly increasing, the network should handle the considerable increment in access requests. Access class barring (ACB) is proposed by the 3rd Generation Partnership Project (3GPP) as a practical congestion control solution in the radio access and core network. The proper tuning of the ACB parameters according to the traffic intensity is critical, but how to do so dynamically and autonomously is a challenging task that has not been specified. Thus, this dissertation contributes to the performance analysis and optimal design of novel algorithms to implement effectively this barring scheme and overcome the challenges introduced by massive M2M communications. In the second scenario, since the heterogeneity of IoT devices and the hardware-based cellular architectures impose even greater challenges to enable flexible and efficient communication in 5G wireless systems, this dissertation also contributes to the design of software-defined gateways (SD-GWs) in a new architecture proposed for wireless software-defined networks called SoftAir. The deployment of these SD-GWs represents an alternative solution aiming at handling both a vast number of devices and the volume of data they will be pouring into the network. Another contribution of this dissertation is to propose a novel technique for the performance analysis of large multi-service networks. The underlying complexity of the network, particularly concerning its size and the ample range of configuration options, makes the solution of the analytical models computationally costly. However, a typical characteristic of these networks is that they support multiple types of traffic flows operating at different time-scales. This time-scale separation can be exploited to reduce considerably the computational cost associated to determine the key performance indicators. Thus, we propose a novel analytical modeling approach based on the transient regime analysis, that we name absorbing Markov chain approximation (AMCA). For a given computational cost, AMCA finds common performance indicators with greater accuracy, when compared to the results obtained by other approximate methods proposed in the literature. / En l'actualitat, la Internet de les Coses (Internet of Things, IoT) és una tecnologia essencial per a la propera generació de sistemes sense fil. La connectivitat és la base d'IoT, i el tipus d'accés requerit dependrà de la naturalesa de l'aplicació. Un dels principals facilitadors de l'entorn IoT és la comunicació machine-to-machine (M2M) i, en particular, el seu enorme potencial per oferir connectivitat ubiqua entre dispositius intel · ligents. Les xarxes mòbils són l'elecció natural per a les aplicacions emergents de IoT i M2M. Un desafiament important en les xarxes mòbils que actualment está rebent molta atenció és aconseguir que la xarxa siga capaç de gestionar escenaris d'accés massiu en què una gran quantitat de dispositius utilitzen comunicacions M2M. D'altra banda, els sistemes mòbils han experimentat un gran desenvolupament en les últimes dècades: incorporen tecnologia sofisticada i nous algoritmes per oferir una àmplia gamma de serveis. El modelatge i análisi del rendiment d'aquestes xarxes multiservei és també un desafiament important que podria requerir un gran esforç computacional. Per abordar els desafiaments anteriors, en aquesta tesi doctoral ens centrem en primer lloc en el disseny i l'avaluació de les prestacions de nous mecanismes de control d'accés per fer front a les comunicacions massives M2M en xarxes cel · lulars. Posteriorment ens ocupem de l'avaluació de prestacions de xarxes multiservei i proposem una nova tècnica analítica que ofereix precisió i eficiència computacional. El nostre principal objectiu és proporcionar solucions per a alleujar la congestió a la xarxa d'accés ràdio quan un gran nombre de dispositius M2M intenten connectar-se a la xarxa. Considerem els dos tipus d'escenaris següents: (i) els dispositius M2M es connecten directament a les estacions base cel · lulars, i (ii) formen grups i les dades s'envien a concentradors de trànsit (gateways) que els proporcionen accés a la infraestructura. En el primer escenari, atès que el nombre de dispositius afegits a la xarxa augmenta contínuament, aquesta hauria de ser capaç de gestionar el considerable increment en les sol · licituds d'accés. El 3rd Generation Partnership Project (3GPP) ha proposat l'access class barring (ACB) com una solució pràctica per al control de congestió a la xarxa d'accès ràdio i la xarxa troncal. L'ajust correcte dels paràmetres d'ACB d'acord amb la intensitat del trànsit és crític, però com fer-ho de forma dinàmica i autònoma és un problema complex, la solució del qual no està recollida en les especificacions del 3GPP. Aquesta tesi doctoral contribueix a l'anàlisi del rendiment i al disseny de nous algoritmes que implementen efectivament aquest mecanisme, i així superar els desafiaments introduïts per les comunicacions massives M2M en les xarxes mòbils actuals i futures. En el segon escenari, atès que l'heterogeneïtat dels dispositius IoT i les arquitectures cel · lulars basades en hardware imposen desafiaments encara més grans per permetre una comunicació flexible i eficient en els sistemes sense fil 5G, aquesta tesi doctoral també contribueix al disseny de software-defined gateways (SD-GWS) en una nova arquitectura proposada per a xarxes sense fils definides per programari que s'anomena SoftAir. Això permet gestionar tant un gran nombre de dispositius com el volum de dades que estaran abocant a la xarxa. Una altra contribució d'aquesta tesi doctoral és la proposta d'una tècnica innovadora per a l'anàlisi de prestacions de xarxes multiservei d'alta capacitat que es basa en un nou enfocament del modelitzat analític de sistemes que operen a diferents escales temporals. Aquest enfocament utilitza l'anàlisi del transitori d'una sèrie de subcadenes absorbents i l'anomenem absorbing Markov chain Approximation (AMCA). Els nostres resultats mostren que per a un cost computacional donat, AMCA calcula els paràmetres de prestacions habituals d / Tello Oquendo, LP. (2018). Design and Performance Analysis of Access Control Mechanisms for Massive Machine-to-Machine Communications in Wireless Cellular Networks [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/107946

Page generated in 0.1634 seconds